top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mobile Mapping Technologies
Mobile Mapping Technologies
Autore Chiang Kai-Wei
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (334 p.)
Soggetto non controllato LRF
smartphone
unmanned vehicle
sensor fusion
2D laser scanner
semantic enrichment
Vitis vinifera
indoor scenes
terrestrial laser scanning
vine size
quadric fitting
multi-group-step L-M optimization
grammar
MLS
indoor topological localization
trajectory fusion
second order hidden Markov model
room type tagging
fingerprinting
restoration
laser scanning
map management
Lidar localization system
point clouds
binary vocabulary
self-calibration
3D processing
cultural heritage
encoder
category matching
indoor mapping
convolutional neural network (CNN)
tunnel cross section
visual positioning
enhanced RANSAC
segmentation-based feature extraction
image retrieval
handheld
crowdsourcing trajectory
visual landmark sequence
indoor localization
mobile mapping
rapid relocation
sensors configurations
precision agriculture
3D digitalization
mobile laser scanning
robust statistical analysis
plant vigor
motion estimation
visual simultaneous localization and mapping
dynamic environment
Bayesian inference
automated database construction
portable mobile mapping system
SLAM
small-scale vocabulary
ORB-SLAM2
LiDAR
IMMS
point cloud
optical sensors
tunnel central axis
constrained nonlinear least-squares problem
3D point clouds
wearable mobile laser system
geometric features
2D laser range-finder
RGB-D camera
OctoMap
ISBN 3-03928-019-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367736903321
Chiang Kai-Wei  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Visual and Camera Sensors
Visual and Camera Sensors
Autore Park Kang Ryoung
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (274 p.)
Soggetto topico Information technology industries
Soggetto non controllato self-assembly device
3D point clouds
accuracy analysis
VSLAM-photogrammetric algorithm
portable mobile mapping system
low-cost device
BIM
camera calibration
DLT
PnP
weighted DLT
uncertainty
covariance
robustness
visual-inertial
semi-direct SLAM
multi-sensor fusion
side-rear-view monitoring system
automatic online calibration
Hough-space
unmanned aerial vehicle
autonomous landing
deep-learning-based motion deblurring and marker detection
network slimming
pruning model
convolutional neural network
convolutional filter
classification
multimodal human recognition
blur image restoration
DeblurGAN
CNN
facial expression recognition system
computer vision
multi-scale featured local binary pattern
unsharp masking
machine learning
lens distortion
DoF-dependent
distortion partition
vision measurement
pathological site classification
in vivo endoscopy
computer-aided diagnosis
artificial intelligence
ensemble learning
convolutional auto-encoders
local image patch
point pair feature
plank recognition
robotic grasping
flying object detection
drone
image processing
camera networks
open-pit mine slope monitoring
optimum deployment
close range photogrammetry
three-dimensional reconstruction
OCD4M
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557360203321
Park Kang Ryoung  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui