Advances in Heat and Mass Transfer in Micro/Nano Systems |
Autore | Zhang Junfeng |
Pubbl/distr/stampa | Basel, : MDPI Books, 2022 |
Descrizione fisica | 1 electronic resource (214 p.) |
Soggetto topico |
Technology: general issues
History of engineering & technology |
Soggetto non controllato |
Darcy-Forchheimer theory
nonlinear stretching nanofluid magnetohydrodynamics convective conditions carbon nanotubes thermal radiation porous cavity wavy channels nanofluids forced convection heat enhancement pressure drop mesh model microfluidic flow distributions fluid network microchannel heat transfer enhancement numerical simulation monodisperse droplet generation satellite droplets piezoelectric method droplet coalescence lattice Boltzmann method inertial migration Poiseuille flow pulsatile velocity loop heat pipe deionized water two-phase flow visualization heat transfer experiment heat transfer porous media pore-scale modeling boundary condition thermal conductivity porosity conjugate interface aspect ratio Maxwell nanofluid Darcy-Forchheimer model chemical reaction Brownian diffusion wearable device microfluidic chip sweat collecting microfluidics liquid metal measurement temperature monitoring PCR pin-fins wavy pin-fins channel performance criterion friction factor |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910595070903321 |
Zhang Junfeng | ||
Basel, : MDPI Books, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Selected Problems in Fluid Flow and Heat Transfer |
Autore | Jaworski Artur J |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (460 p.) |
Soggetto non controllato |
thermal performance
microbubble pump particle deposition flow oscillation orthogonal jet flat plate gas turbine engine air heater flow behavior transonic compressor friction factor nonlinear thermal radiation oscillators porous cavity POD turbulent flow thermosyphon turbulence mass transfer tip leakage flow capture efficiency pipe flow correlation decomposition dimensionalities heat transfer pressure loss CANDU-6 numerical modeling CFD magnetic field boundary layer two-phase flow heat transfer performance Colebrook-White computational burden phase change surrogate model Padé polynomials traveling-wave heat engine flow regime numerical simulation energetics ( A g ? F e 3 O 4 / H 2 O ) hybrid nanofluid pumps BEM SPIV acoustic streaming microbubbles Aspen® push-pull Positive Temperature Coefficient (PTC) elements iterative procedure transient analysis spiral fin-tube toxic gases unsteady heat release rate water hammer method of moment visualization superheated steam impingement heat transfer enhancement X-ray microtomography moderator wind turbine flow rate fin-tube flue gas actuator disc temperature distributions supercritical LNG sharp sections moment of inertia Colebrook equation pump efficiency tower OpenFOAM computational fluid dynamics chemical reaction pump performance logarithms numerical results downwind thermodynamic triaxial stress flow friction energy conversion entropy generation zigzag type inertance-compliance section aspect ratios laminar separation bubble axial piston pumps thermogravimetry pressure drop load resistances vortex breakdown T-section prism flow-induced motion centrifugal pump load vortex identification decomposition region condensation performance characteristics pipes detached-eddy simulation Computational Fluid Dynamics (CFD) simulation thermal cracking real vehicle experiments bubble size thermal energy recovery hydraulic resistances concentration tower shadow fire-spreading characteristics thermoacoustic electricity generator bubble generation multi-stage thermal effect ferrofluid PHWR fluidics multiphase flow printed circuit heat exchanger particle counter dew point temperature |
ISBN | 3-03921-428-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910367758603321 |
Jaworski Artur J | ||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|