top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Mobile Mapping Technologies
Advances in Mobile Mapping Technologies
Autore Lehtola Ville
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (268 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato 3D camera
3D city model
3D mapping
3D simulation
3D surveying
6-DoF
accuracy
boresight angles
building 3D modelling
CAM localization
CNN features
configuration analysis
control points
controllability
convolutional neural networks
correlation coefficient
data fusion
dataset
deep learning
DSIEKF
DTM
embedded-systems
evaluation
exposure control
F-CNN
geometrical constraints
georeferencing
graph matching
guidance
Helmert variance component estimation
IEKF
imaging network design
inception
laser scanning
lever arm
Lidar
LiDAR
line feature matching method
loop closure detection
manhole cover
mobile laser scanning
Mobile Laser Scanning
mobile mapping
mobile mapping systems
MSS
Ouster OS-1-64
outdoor
Pandar64
parking statistics
path planning
performance evaluation
photogrammetry
plane-based calibration field
point and line features
point cloud
point cloud coverage
point cloud density
point clouds
real-time
RetinaNet
RGB-D
robot operating system
scene completion
semantic
semantic topology graph
smart city
synthetic
TLS reference point clouds
transfer learning
V-SLAM
vehicle detection
view planning
visual SLAM
visual-inertial odometry
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566470903321
Lehtola Ville  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Remote Sensing for Global Forest Monitoring
Advances in Remote Sensing for Global Forest Monitoring
Autore Tomppo Erkki
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (352 p.)
Soggetto topico Environmental economics
Research and information: general
Soggetto non controllato activity data
bootstrapping
boreal forest
Bowen ratio
C-band
canopy height model
carbon flux
classification
compatible equation
constrained neighbor interpolation
CRFasRNN
CUSUM
data assessment
data fusion
deep learning
deforestation
degradation
digital surface model
digital terrain model
drought
dual-FCN8s
EBLUP
emissions factor
error propagation
error-in-variable modeling
FCN8s
field measured LAI
forest area change
forest cover
forest disturbance mapping
forest monitoring
forest structure change
forest type
genetic algorithm
Germany
GF2
improved k-NN
inconsistency
IPCC good practice guidelines
La Rioja
land use land cover
Landsat
leave-one-out cross-validation
LiDAR
logistic regression
machine-learning
magnitude
multinomial logistic regression
multitemporal LiDAR and stand-level estimates
n/a
near real-time monitoring
nonlinear seemingly unrelated regression
NRT monitoring
ordinary neighbor interpolation
Picea crassifolia Kom
point cloud density
random forest
random forests
remotely sensed LAI
removals factor
savanna
Sentinel 2
Sentinel-1
Sentinel-2
small area estimation
South Africa
state space models
statistical estimator
stereo imagery
support vector machine
synthetic aperture radar
temperate forest
temporal dynamics
time series satellite data
tropical forest
tropical peat
uncertainty
uncertainty evaluation
validation
windstorm damage
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557338103321
Tomppo Erkki  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui