top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Smart Sensing Technologies for Agriculture
Smart Sensing Technologies for Agriculture
Autore Adamchuk Viacheslav I
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (232 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adaptive K-means
apparent electrical conductivity (ECa)
autonomous robot
body dimensions
boundary-line
broiler surface temperature extraction
cation exchange capacity
clay content
convolutional neural networks
crop protection
cutting point detection
deep learning
droplet characterization
elemental composition
ellipse fitting
feature recognition
FFPH
germination paper
gripper
harvesting robot
head region locating
infrared spectroscopy
ion-selective electrode (ISE)
Kalman filter
Kd-network
kinetic stereo imaging
laser-induced breakdown spectroscopy
law of minimum
LIBS
livestock
lying posture
machine vision
mapping
model predictive control
moisture measurement
multispectral imaging
non-contact measurement
on-site detection
optical micro-sensors
partial least squares (PLS)
pH
plant detection
point cloud
precision agriculture
precision farming
precision weeding
principal component analysis (PCA)
proximal soil sensing
quantile regression
quasi-3D inversion algorithm
real-time measurement
sandy infertile soil
segmentation
sensor fusion
soil
soil electrical resistivity
soil moisture
soil nitrate nitrogen (NO3−-N)
soil nutrients
soil testing
spectroscopy
standing posture
thermal image processing
Three-dimensional mapping
transfer learning
UAV
willow tree
X-ray fluorescence
yield estimation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557667303321
Adamchuk Viacheslav I  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
UAVs for Vegetation Monitoring
UAVs for Vegetation Monitoring
Autore de Castro Megías Ana
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (452 p.)
Soggetto topico Research & information: general
Soggetto non controllato Acacia
agro-environmental measures
artificial intelligence
artificial neural network
banana
broad-sense heritability
canopy cover
canopy height
century-old biochar
chlorophyll content
CIELab
classification
close remote sensing
CNN
container-grown
contextual spatial domain/resolution
convolution neural network
cotton root rot
crop canopy
crop disease
crop mapping
crop monitoring
curve fitting
data aggregation
deep learning
detection performance
disease detection
disease diagnosis
disease monitoring
drone
drought tolerance
eddy covariance (EC)
evapotranspiration (ET)
Faster RCNN
flight altitude
forage grass
forest
Fusarium wilt
Glycine max
GRAPEX
growth model
high throughput field phenotyping
HSV
hyperspectral
image analysis
image segmentation
Inception v2
individual plant segmentation
Indonesia
inference time
land cover
least squares support vector machine
machine learning
maize tassel
method comparison
MobileNet v2
multiple linear regression
multiscale textures
multispectral
multispectral image
multispectral imagery
multispectral remote sensing
NDVI
neural network
nitrogen stress
nutrient deficiency
oil palm
olive groves
operating parameters
ornamental
patch-based CNN
phenotyping gap
plant detection
plant nitrogen estimation
plant segmentation
plant trails
plant-by-plant
plant-level
precision agriculture
purple rapeseed leaves
random forest
red-edge spectra
remote sensing
remote sensing technique
RGB
RGB camera
RGB imagery
semantic segmentation
single-plant
solar zenith angle
southern Spain
spatial resolution
SSD
sUAS
support vector machine
tassel branch number
texture
thermal
thermal camera
time of day
transfer learning
transpiration
tropics
Two Source Energy Balance model (TSEB)
U-Net
UAS
UAV
UAV digital images
UAV hyperspectral
UAV remote sensing
unmanned aerial vehicle
variable importance
vegetation cover
vegetation ground cover
vegetation index
vegetation indices
VGG16
visual recognition
water stress
weed detection
wheat yellow rust
winter wheat biomass
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557661103321
de Castro Megías Ana  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui