top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Signal Processing in Wearable Sensors for Health Monitoring
Advanced Signal Processing in Wearable Sensors for Health Monitoring
Autore Abbod Maysam
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (206 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato automated dietary monitoring
eating detection
eating timing error analysis
biomedical signal processing
smart eyeglasses
wearable health monitoring
artificial neural network
joint moment prediction
extreme learning machine
Hill muscle model
online input variables
Review
ECG
Signal Processing
Machine Learning
Cardiovascular Disease
Anomaly Detection
photoplethysmography
motion artifact
independent component analysis
multi-wavelength
continuous arterial blood pressure
systolic blood pressure
diastolic blood pressure
deep convolutional autoencoder
genetic algorithm
electrocardiography
vectorcardiography
myocardial infarction
long short-term memory
spline
multilayer perceptron
pain detection
stress detection
wearable sensor
physiological signals
behavioral signals
non-invasive system
hemodynamics
arterial blood pressure
central venous pressure
pulmonary arterial pressure
intracranial pressure
heart rate measurement
remote HR
remote PPG
remote BCG
blind source separation
drowsiness detection
EEG
frequency-domain features
multicriteria optimization
machine learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566462503321
Abbod Maysam  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Emotion and Stress Recognition Related Sensors and Machine Learning Technologies
Emotion and Stress Recognition Related Sensors and Machine Learning Technologies
Autore Kyamakya Kyandoghere
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (550 p.)
Soggetto topico Technology: general issues
Soggetto non controllato subject-dependent emotion recognition
subject-independent emotion recognition
electrodermal activity (EDA)
deep learning
convolutional neural networks
automatic facial emotion recognition
intensity of emotion recognition
behavioral biometrical systems
machine learning
artificial intelligence
driving stress
electrodermal activity
road traffic
road types
Viola-Jones
facial emotion recognition
facial expression recognition
facial detection
facial landmarks
infrared thermal imaging
homography matrix
socially assistive robot
EEG
arousal detection
valence detection
data transformation
normalization
mental stress detection
electrocardiogram
respiration
in-ear EEG
emotion classification
emotion monitoring
elderly caring
outpatient caring
stress detection
deep neural network
convolutional neural network
wearable sensors
psychophysiology
sensor data analysis
time series analysis
signal analysis
similarity measures
correlation statistics
quantitative analysis
benchmarking
boredom
emotion
GSR
classification
sensor
face landmark detection
fully convolutional DenseNets
skip-connections
dilated convolutions
emotion recognition
physiological sensing
multimodal sensing
flight simulation
activity recognition
physiological signals
thoracic electrical bioimpedance
smart band
stress recognition
physiological signal processing
long short-term memory recurrent neural networks
information fusion
pain recognition
long-term stress
electroencephalography
perceived stress scale
expert evaluation
affective corpus
multimodal sensors
overload
underload
interest
frustration
cognitive load
stress research
affective computing
human-computer interaction
deep convolutional neural network
transfer learning
auxiliary loss
weighted loss
class center
stress sensing
smart insoles
smart shoes
unobtrusive sensing
stress
center of pressure
regression
signal processing
arousal
aging adults
musical genres
emotion elicitation
dataset
emotion representation
feature selection
feature extraction
computer science
virtual reality
head-mounted display
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557346003321
Kyamakya Kyandoghere  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Signal Processing Using Non-invasive Physiological Sensors
Signal Processing Using Non-invasive Physiological Sensors
Autore Niazi Imran Khan
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (222 p.)
Soggetto topico Medical equipment & techniques
Soggetto non controllato movement intention
brain–computer interface
movement-related cortical potential
neurorehabilitation
phonocardiogram
machine learning
empirical mode decomposition
feature extraction
mel-frequency cepstral coefficients
support vector machines
computer aided diagnosis
congenital heart disease
statistical analysis
convolutional neural network (CNN)
long short-term memory (LSTM)
emotion recognition
EEG
ECG
GSR
deep neural network
physiological signals
electroencephalography
Brain-Computer Interface
multiscale principal component analysis
successive decomposition index
motor imagery
mental imagery
classification
hybrid brain-computer interface (BCI)
home automation
electroencephalogram (EEG)
steady-state visually evoked potential (SSVEP)
eye blink
short-time Fourier transform (STFT)
convolution neural network (CNN)
human machine interface (HMI)
rehabilitation
wheelchair
quadriplegia
Raspberry Pi
image gradient
AMR voice
Open-CV
image processing
acoustic
startle
reaction
response
reflex
blink
mobile
sound
stroke
EMG
brain-computer interface
myoelectric control
pattern recognition
functional near-infrared spectroscopy
z-score method
channel selection
region of interest
channel of interest
respiratory rate (RR)
Electrocardiogram (ECG)
ECG derived respiration (EDR)
auscultation sites
pulse plethysmograph
biomedical signal processing
feature selection and reduction
discrete wavelet transform
hypertension
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566473903321
Niazi Imran Khan  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders
Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders
Autore Suppa Antonio
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (274 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato inertial measurement units
gait analysis
biomedical signal processing
pattern recognition
step detection
physiological signals
Parkinson’s disease
pathological gait
turning analysis
wearable sensors
mobile gait analysis
wearables
inertial sensors
traumatic brain injury
dynamic balance
gait disorders
gait patterns
head injury
gait symmetry
gait smoothness
acceleration
machine learning
classification
accelerometer
GAITRite
multi-regression normalization
SVM
random forest classifier
balance
gait
transcranial direct current stimulation
wearable electronics
IMUs
cueing
posture
rehabilitation
cerebellar ataxia
movement analysis
personalized medicine
stroke
asymmetry
trunk
reliability
validity
aging
reactive postural responses
yaw perturbation
kinematics
postural stability
dynamic posturography
multiple sclerosis
gait metrics
test-retest reliability
sampling frequency
accelerometry
autocorrelation
harmonic ratio
six-minute walk
back school
inertial sensor
lower back pain
stability
timed up and go test
gait assessment
tri-axial accelerometer
CV
healthy subjects
test-retest
trajectory reconstruction
stride segmentation
dynamic time warping
pedestrian dead-reckoning
near falls
loss of balance
pre-impact fall detection
activities of daily life
bio-signals
EEG
EMG
wireless sensors
posturography
Alzheimer’s disease
vestibular syndrome
diagnosis
symptoms monitoring
wearable
home-monitoring
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557446403321
Suppa Antonio  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui