top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications
Autore Vitelli Massimo
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (280 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adaptive neuro-fuzzy inference systems
ANFIS
artificial neural network
artificial neural networks
clear sky irradiance
clustering-based PV fault detection
COA
complex network analysis
data fusion
deterioration
deterministic optimization algorithm
diffractive grating
diffractive optical element
double flames generation (DFG) strategy
duty cycle
environmental parameters
fault prognosis
feed-forward neural networks
finite difference time domain
genetic algorithm
global horizontal irradiance
global optimization
gradient descent
hot spot
image processing
implicit model solution
integrated energy systems
linear approximation
long short-term memory
LSTM cell
machine learning
mathematical modeling
maximum power point tracking
metaheuristic optimization algorithm
moth-flame optimization
MPPT algorithm
multiple regression model
national power system
optical modelling
parameter extraction
partial shading
particle swarm optimization-artificial neural networks
performances evaluation
persistent predictor
photovoltaic array
photovoltaic model
photovoltaic module
photovoltaic plants
photovoltaic power prediction
photovoltaic system
photovoltaic systems
photovoltaics
publicly available weather reports
PV fleet
PV power prediction
PVs power output forecasting
recurrent neural networks
renewable energy
self-imputation
sensor network
series-parallel
single stage grid connected systems
single-diode model
smart energy management
solar cell optimization
Solar cell parameters
solar concentrator
solar irradiation
spectral beam splitting
statistical method
sustainable development
thermal image
two-diode model
unsupervised learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557297703321
Vitelli Massimo  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Control in Energy Systems / Anastasios Dounis
Intelligent Control in Energy Systems / Anastasios Dounis
Autore Dounis Anastasios
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (508 p.)
Soggetto non controllato energy management system
artificial neural network
control architecture
intelligent buildings
sensitivity analysis
neural networks
active balance
photovoltaic system
fast frequency response
artificial intelligence
MPPT operation
model uncertainty
load frequency control
decision tree
multi-agent control
hybrid power plant
Fault Ride Through Capability
optimization
small scale compressed air energy storage (SS-CAES)
smart micro-grid
current distortion
hybrid electric vehicle
parameter estimation
railway
ANFIS
solar monitoring system
urban microgrids
phase-load balancing
model reduction
high-speed railway
energy internet
coordination of reserves
differential evolution
photovoltaic array
ancillary service
adjacent areas
instantaneous optimization minimum power loss
model predictive control
HVAC systems
sliding mode control
MPPT: maximum power point tracking
power oscillations
thyristor
interaction minimization
occupancy model
fuzzy logic controller
power transformer winding
RLS
integrated energy systems
vibration characteristics
battery safety
error estimation
error compensation
static friction
convolutional neural network
forecasting
continuous voltage control
medium voltage
bridgeless SEPIC PFC converter
building climate control
PEM fuel cell
proton exchange membrane fuel cell
compound structured permanent-magnet motor
occupancy-based control
four phases interleaved boost converter
long short term memory
line switching
lithium-ion battery pack
back propagation (BP) neural network
doubly-fed induction generator
double forgetting factors
current controller design
repetitive controller
exhaust gas recirculation (EGR) valve system
neural network controller
step-up boost converter
internal short circuit resistance
electric power consumption
electric vehicle
multiphysical field analysis
energy efficiency
multi-energy complementary
system identification
?-synthesis
network sensitivity
intelligent control
?-class function
frequency support
multi-step forecasting
frequency containment reserve
orthogonal least square
rule-based control
industrial process
hierarchical Petri nets
wind integrated power system
probabilistic power flow
voltage controlling
adaptive backstepping
AC-DC converters
line loss
demand side management
energy systems
short-circuit experiment
winding-fault characteristics
neutral section
stochastic power system operating point drift
neural network algorithm
operation limit violations
fractional order fuzzy PID controller
preventive control
AC static switch
battery packs
model-based fault detection
automotive application
nonlinear power systems
adaptive damping control
pilot point
energy management
position control
frequency control dead band
fuzzy
voltage violations
distribution network planning
frequency regulation
energy management strategy
multiple-point control
electric meter
polynomial expansion
commercial/residential buildings
system modelling
three-stage
soft internal short circuit
demand response
ISBN 9783039214167
3039214160
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367565403321
Dounis Anastasios  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui