Environment-Friendly Construction Materials . Volume 2 |
Autore | Wu Shaopeng |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (256 p.) |
Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
ISBN | 3-03921-015-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910346837903321 |
Wu Shaopeng | ||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Environment-Friendly Construction Materials . Volume 1 |
Autore | Wu Shaopeng |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (280 p.) |
Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
ISBN | 3-03921-013-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910346838003321 |
Wu Shaopeng | ||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Environment-Friendly Construction Materials . Volume 3 |
Autore | Wu Shaopeng |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (270 p.) |
Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
ISBN | 3-03921-017-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910346837803321 |
Wu Shaopeng | ||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fatigue and Fracture of Non-metallic Materials and Structures |
Autore | Spagnoli Andrea |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (586 p.) |
Soggetto topico | History of engineering & technology |
Soggetto non controllato |
Ethylene-propylene diene monomer rubber EPDM
grommet physical properties optimization of shape design reliability of rocks fatigue load strain energy red sandstone distribution of strain energy indices multi-scale simulation fatigue loading road bridge decks stagnant water fracture toughness blast furnace slag particle size compressive strength concrete concrete cracking crack patterns carbon fiber-reinforced polymers-CFRP RC strengthening (in bending and shear) RC beams soft materials polymers strain rate defect tolerance digital image correlation stress concentrators notch blunting lightning strike composite reinforced panel blow-off impulse electric-thermal coupling boundary effect size effect tensile strength physical modelling test rock structure fracture deformation mining neutral axis self-healing successive strain gauge flexural test bridge decks pseudo-cracking method data assimilation triaxial compression test sandstone rock mechanics rock fracture energy evolution rock-like material crack propagation discrete element strain rate tensor velocity field jointed rock uniaxial tension loading numerical analysis discrete element method strata structural behavior numerical simulation tension weakening fractures goaf consolidation fatigue life modified asphalt mixture four-point bending beam fatigue test two-point trapezoidal beam fatigue test overlay tester embedment shale rock proppant pack fracture width fly ash fineness fracture energy critical stress intensity factor assessment bridge evaluation compressive membrane action concrete bridges fatigue fatigue assessment live loads prestressed concrete punching shear scale model CFRP Low Velocity Impacts Cohesive Zone Model (CZM) Finite Element Analysis (FEA) VUMAT inter-laminar damage intra-laminar damage chemical grouting flowing water water plugging rate joint roughness coefficient damage model mode-II microcracks thermodynamics reinforced concrete beam impact and quasi-static loading retrofitting mineral grain shape particle flow code uniaxial compression simulation rock mechanical property mesostructure finite element analysis cohesive zone model high performance concrete fibre-reinforced high performance concrete compressive stress compressive modulus of elasticity maximum compressive strain tension pressure-tension apparatus nondestructive testing ultrasonic pulse velocity ABAQUS FEA high-temperature wedge splitting test fracture parameters reducing condition carbon-containing refractories strain-softening failure probability diamond composite material failure characteristics reliability rock cutting picks civil engineering fiber-reinforced composite laminate multi-directional laminate delamination elastic interface energy release rate mixed-mode fracture enhanced PG-NEM functionally graded material (FGM) stress intensity factor (SIF) modified interaction integral metallic glasses shear bands mechanical properties fracture mechanism small wind turbine stall regulation pitch regulation aeroelastic simulation Fatigue Fracture mechanics Structural integrity Polymers Composites Ceramics Concrete Rock Soft matter Advanced materials |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557474603321 |
Spagnoli Andrea | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|