Lebensversicherungstechnik Algebraisch Verstehen : Grundstruktur der Kalkulation Von Lebensversicherungsverträgen
| Lebensversicherungstechnik Algebraisch Verstehen : Grundstruktur der Kalkulation Von Lebensversicherungsverträgen |
| Autore | Recht Peter |
| Pubbl/distr/stampa | Berlin/München/Boston : , : Walter de Gruyter GmbH, , 2021 |
| Descrizione fisica | 1 online resource (332 pages) |
| Altri autori (Persone) | SchadePhilipp |
| Collana | De Gruyter Studium |
| Soggetto topico | BUSINESS & ECONOMICS / Insurance / Life |
| Soggetto non controllato |
Insurance mathematics
calculating policies calculating rates commutation values insurance and linear algebra life insurance calculations life insurance techniques orthogonality principle of equivalence in insurance mathematics |
| ISBN |
9783110740905
3110740907 |
| Classificazione | QP 890 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Nota di contenuto | Intro -- Inhalt -- Einleitung -- Teil I: Technische Kalkulation von Lebensversicherungsverträgen -- Einführung -- 1 Profile als technische Grundlage der Kalkulation -- 2 Bewertung von Beitrags- und Leistungsprofilen -- das Äquivalenzprinzip -- 3 Erstkalkulation eines Versicherungsvertrages -- 4 Kalkulationen während der Laufzeit eines Versicherungsvertrages -- 5 Klassische Kommutationswerte und Barwertfaktoren -- Teil II: Ein strukturelles Fundament der Kalkulation -- Einführung -- 6 Algebraische Grundlagen -- 7 φ-Orthogonalität -- 8 Algebraische Verallgemeinerung des Äquivalenzprinzips -- 9 Unterjährige Bewertung von Profilen -- m-Expansionen von φ -- 10 Verallgemeinerte Kommutationswerte und Barwertfaktoren -- Epilog -- Literatur -- Stichwortverzeichnis. |
| Record Nr. | UNINA-9910554227803321 |
Recht Peter
|
||
| Berlin/München/Boston : , : Walter de Gruyter GmbH, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Non-archimedean tame topology and stably dominated types / / Ehud Hrushovski, François Loeser
| Non-archimedean tame topology and stably dominated types / / Ehud Hrushovski, François Loeser |
| Autore | Hrushovski Ehud |
| Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2016 |
| Descrizione fisica | 1 online resource (227 p.) |
| Disciplina | 512.4 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico | Tame algebras |
| Soggetto non controllato |
Abhyankar property
Berkovich space Galois orbit Riemann-Roch Zariski dense open set Zariski open subset Zariski topology algebraic geometry algebraic variety algebraically closed valued field analytic geometry birational invariant canonical extension connectedness continuity criteria continuous definable map continuous map curve fibration definable compactness definable function definable homotopy type definable set definable space definable subset definable topological space definable topology definable type definably compact set deformation retraction finite simplicial complex finite-dimensional vector space forward-branching point fundamental space g-continuity g-continuous g-open set germ good metric homotopy equivalence homotopy imaginary base set ind-definable set ind-definable subset inflation homotopy inflation inverse limit iso-definability iso-definable set iso-definable subset iterated place linear topology main theorem model theory morphism natural functor non-archimedean geometry non-archimedean tame topology o-minimal formulation o-minimality orthogonality path pro-definable bijection pro-definable map pro-definable set pro-definable subset pseudo-Galois covering real numbers relatively compact set residue field extension retraction schematic distance semi-lattice sequence smooth case smoothness stability theory stable completion stable domination stably dominated point stably dominated type stably dominated strong stability substructure topological embedding topological space topological structure topology transcendence degree v-continuity valued field Γ-internal set Γ-internal space Γ-internal subset |
| ISBN | 1-4008-8122-6 |
| Classificazione | SI 830 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- 1. Introduction -- 2. Preliminaries -- 3. The space v̂ of stably dominated types -- 4. Definable compactness -- 5. A closer look at the stable completion -- 6. Γ-internal spaces -- 7. Curves -- 8. Strongly stably dominated points -- 9. Specializations and ACV2F -- 10. Continuity of homotopies -- 11. The main theorem -- 12. The smooth case -- 13. An equivalence of categories -- 14. Applications to the topology of Berkovich spaces -- Bibliography -- Index -- List of notations |
| Record Nr. | UNINA-9910797708403321 |
Hrushovski Ehud
|
||
| Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Non-archimedean tame topology and stably dominated types / / Ehud Hrushovski, François Loeser
| Non-archimedean tame topology and stably dominated types / / Ehud Hrushovski, François Loeser |
| Autore | Hrushovski Ehud |
| Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2016 |
| Descrizione fisica | 1 online resource (227 p.) |
| Disciplina | 512.4 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico | Tame algebras |
| Soggetto non controllato |
Abhyankar property
Berkovich space Galois orbit Riemann-Roch Zariski dense open set Zariski open subset Zariski topology algebraic geometry algebraic variety algebraically closed valued field analytic geometry birational invariant canonical extension connectedness continuity criteria continuous definable map continuous map curve fibration definable compactness definable function definable homotopy type definable set definable space definable subset definable topological space definable topology definable type definably compact set deformation retraction finite simplicial complex finite-dimensional vector space forward-branching point fundamental space g-continuity g-continuous g-open set germ good metric homotopy equivalence homotopy imaginary base set ind-definable set ind-definable subset inflation homotopy inflation inverse limit iso-definability iso-definable set iso-definable subset iterated place linear topology main theorem model theory morphism natural functor non-archimedean geometry non-archimedean tame topology o-minimal formulation o-minimality orthogonality path pro-definable bijection pro-definable map pro-definable set pro-definable subset pseudo-Galois covering real numbers relatively compact set residue field extension retraction schematic distance semi-lattice sequence smooth case smoothness stability theory stable completion stable domination stably dominated point stably dominated type stably dominated strong stability substructure topological embedding topological space topological structure topology transcendence degree v-continuity valued field Γ-internal set Γ-internal space Γ-internal subset |
| ISBN | 1-4008-8122-6 |
| Classificazione | SI 830 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- Contents -- 1. Introduction -- 2. Preliminaries -- 3. The space v̂ of stably dominated types -- 4. Definable compactness -- 5. A closer look at the stable completion -- 6. Γ-internal spaces -- 7. Curves -- 8. Strongly stably dominated points -- 9. Specializations and ACV2F -- 10. Continuity of homotopies -- 11. The main theorem -- 12. The smooth case -- 13. An equivalence of categories -- 14. Applications to the topology of Berkovich spaces -- Bibliography -- Index -- List of notations |
| Record Nr. | UNINA-9910822032303321 |
Hrushovski Ehud
|
||
| Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Supramolecular Chemistry in the 3rd Millennium
| Supramolecular Chemistry in the 3rd Millennium |
| Autore | Housecroft Catherine |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (263 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
4-pyrrolidinopyridinium
anion binding antisymmetric exchange bilayer membranes binary solid calixarenes capsules carboxylates catalysis catalysis regulation chirality chloride receptor chlorido ligand displacement chloropyrazin-2-amine chloropyrazine co-crystal cocrystal synthesis cocrystallization mechanism complementarity conformational polymorphism coordination cage coordination chemistry coordination clusters coordination-driven self-assembly copper chloride complexes copper complexes copper halide copper(II) complexes crown-ethers crystal engineering crystal structure cucurbit[7]uril cyclotricatechylene desorption kinetics DFT calculations dipolar interaction EPR spectroscopy H-bonding pattern halogen bond helicate Hirshfeld surfaces host-guest chemistry host-guest interaction hydrogen bond hydrogen bonding hydrogen bonds hydroquinone intermolecular contacts ion-channels isotropic exchange ligands luminescence magnetic susceptibility manganese metal ions metal-organic cage metal-organic frameworks metalla-assemblies metallosupramolecular molecular electrostatic potential molecular magnetism molecular recognition molecular tecton multicomponent cocrystal N,N',N",N‴-Tetraisopropylpyrophosphoramide n/a network structure orthogonality porous material pyrazine pyrazolato ligands pyrophosphoramide redox switch Schiff base ligands self-assembly solvatochromism structure supramolecular assembly supramolecular chemistry supramolecular motifs supramolecular structure switchable system synthons tetrazole ligands uranium(VI) urea hydrolysis vapour sorption X-ray crystallography X-ray diffraction σ-hole |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557360903321 |
Housecroft Catherine
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||