Fractional Calculus Operators and the Mittag-Leffler Function |
Autore | Andrić Maja |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (258 p.) |
Soggetto topico |
Research & information: general
Mathematics & science |
Soggetto non controllato |
fractional derivative
generalized Mittag-Leffler kernel (GMLK) Legendre polynomials Legendre spectral collocation method dynamical systems random time change inverse subordinator asymptotic behavior Mittag-Leffler function data fitting magnetization magnetic fluids Gamma function Psi function Pochhammer symbol hypergeometric function 2F1 generalized hypergeometric functions tFu Gauss's summation theorem for 2F1(1) Kummer's summation theorem for 2F1(−1) generalized Kummer's summation theorem for 2F1(−1) Stirling numbers of the first kind Hilfer-Hadamard fractional derivative Riemann-Liouville fractional derivative Caputo fractional derivative fractional differential equations inclusions nonlocal boundary conditions existence and uniqueness fixed point gamma function Beta function Generalized Mittag-Leffler functions generalized hypergeometric function Fox-Wright function recurrence relations Riemann-Liouville fractional calculus operators (α, h-m)-p-convex function Fejér-Hadamard inequality extended generalized fractional integrals Mittag-Leffler functions initial value problems Laplace transform exact solution Chebyshev inequality Pólya-Szegö inequality fractional integral operators Wright function Srivastava's polynomials fractional calculus operators Lavoie-Trottier integral formula Oberhettinger integral formula fractional partial differential equation boundary value problem separation of variables Mittag-Leffler Abel-Gontscharoff Green's function Hermite-Hadamard inequalities convex function κ-Riemann-Liouville fractional integral Dirichlet averages B-splines dirichlet splines Riemann-Liouville fractional integrals hypergeometric functions of one and several variables generalized Mittag-Leffler type function Srivastava-Daoust generalized Lauricella hypergeometric function fractional calculus Hermite-Hadamard inequality Fox H function subordinator and inverse stable subordinator Lamperti law order statistic |
ISBN | 3-0365-5368-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910619461803321 |
Andrić Maja | ||
MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Risk, Ruin and Survival: Decision Making in Insurance and Finance |
Autore | Ren Jiandong |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (210 p.) |
Soggetto non controllato |
insurance
multiplicative background risk model renewal process dual risk model collective risk model risk measure aggregate risk Laplace transform transfer function risk management risk theory maximal tail dependence constant interest rate partial integro-differential equation reinsurance financial time series spatial risk measures and corresponding axiomatic approach central limit theorem integral equation Markovian arrival process systematic risk information processing discounted aggregate claims surplus process weighted cuts rate of spatial diversification national culture operational risk covariance cumulative Parisian ruin spatial dependence background risk survival analysis Monte Carlo aggregate discounted claims stochastic orders order statistic max-stable random fields copulas hazard model multivariate gamma distribution copula advanced measurement approach concomitant archimedean copulas rating migrations ruin probability clustering confidence interval individual risk model numerical approximation value-at-risk |
ISBN | 3-03928-517-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Risk, Ruin and Survival |
Record Nr. | UNINA-9910404092203321 |
Ren Jiandong | ||
MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|