top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Geometry of Submanifolds and Homogeneous Spaces
Geometry of Submanifolds and Homogeneous Spaces
Autore Kaimakamis George
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (128 p.)
Soggetto non controllato warped products
vector equilibrium problem
Laplace operator
cost functional
pointwise 1-type spherical Gauss map
inequalities
homogeneous manifold
finite-type
magnetic curves
Sasaki-Einstein
evolution dynamics
non-flat complex space forms
hyperbolic space
compact Riemannian manifolds
maximum principle
submanifold integral
Clifford torus
D’Atri space
3-Sasakian manifold
links
isoparametric hypersurface
Einstein manifold
real hypersurfaces
Kähler 2
*-Weyl curvature tensor
homogeneous geodesic
optimal control
formality
hadamard manifolds
Sasakian Lorentzian manifold
generalized convexity
isospectral manifolds
Legendre curves
geodesic chord property
spherical Gauss map
pointwise bi-slant immersions
mean curvature
weakly efficient pareto points
geodesic symmetries
homogeneous Finsler space
orbifolds
slant curves
hypersphere
??-space
k-D’Atri space
*-Ricci tensor
homogeneous space
ISBN 3-03928-001-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910372786803321
Kaimakamis George  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hypoelliptic Laplacian and orbital integrals [[electronic resource] /] / Jean-Michel Bismut
Hypoelliptic Laplacian and orbital integrals [[electronic resource] /] / Jean-Michel Bismut
Autore Bismut Jean-Michel
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, 2011
Descrizione fisica 1 online resource (320 p.)
Disciplina 515.7242
Collana Annals of mathematics studies
Soggetto topico Differential equations, Hypoelliptic
Laplacian operator
Definite integrals
Orbit method
Soggetto genere / forma Electronic books.
Soggetto non controllato Bianchi identity
Brownian motion
Casimir operator
Clifford algebras
Clifford variables
Dirac operator
Euclidean vector space
Feynman-Kac formula
Gaussian integral
Gaussian type estimates
Heisenberg algebras
Kostant
Leftschetz formula
Littlewood-Paley decomposition
Malliavin calculus
Pontryagin maximum principle
Selberg's trace formula
Sobolev spaces
Toponogov's theorem
Witten complex
action functional
complexification
conjugations
convergence
convexity
de Rham complex
displacement function
distance function
elliptic Laplacian
elliptic orbital integrals
fixed point formulas
flat bundle
general kernels
general orbital integrals
geodesic flow
geodesics
harmonic oscillator
heat kernel
heat kernels
heat operators
hypoelliptic Laplacian
hypoelliptic deformation
hypoelliptic heat kernel
hypoelliptic heat kernels
hypoelliptic operators
hypoelliptic orbital integrals
index formulas
index theory
infinite dimensional orbital integrals
keat kernels
local index theory
locally symmetric space
matrix part
model operator
nondegeneracy
orbifolds
orbital integrals
parallel transport trivialization
probabilistic construction
pseudodistances
quantitative estimates
quartic term
real vector space
refined estimates
rescaled heat kernel
resolvents
return map
rough estimates
scalar heat kernel
scalar heat kernels
scalar hypoelliptic Laplacian
scalar hypoelliptic heat kernels
scalar hypoelliptic operator
scalar part
semisimple orbital integrals
smooth kernels
standard elliptic heat kernel
supertraces
symmetric space
symplectic vector space
trace formula
unbounded operators
uniform bounds
uniform estimates
variational problems
vector bundles
wave equation
wave kernel
wave operator
ISBN 1-283-16387-X
9786613163875
1-4008-4057-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Acknowledgments -- Introduction -- Chapter One. Clifford and Heisenberg algebras -- Chapter Two. The hypoelliptic Laplacian on X = G/K -- Chapter Three. The displacement function and the return map -- Chapter Four. Elliptic and hypoelliptic orbital integrals -- Chapter Five. Evaluation of supertraces for a model operator -- Chapter Six. A formula for semisimple orbital integrals -- Chapter Seven. An application to local index theory -- Chapter Eight. The case where [k (γ) ; p0] = 0 -- Chapter Nine. A proof of the main identity -- Chapter Ten. The action functional and the harmonic oscillator -- Chapter Eleven. The analysis of the hypoelliptic Laplacian -- Chapter Twelve. Rough estimates on the scalar heat kernel -- Chapter Thirteen. Refined estimates on the scalar heat kernel for bounded b -- Chapter Fourteen. The heat kernel qXb;t for bounded b -- Chapter Fifteen. The heat kernel qXb;t for b large -- Bibliography -- Subject Index -- Index of Notation
Record Nr. UNINA-9910456831103321
Bismut Jean-Michel  
Princeton, : Princeton University Press, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hypoelliptic Laplacian and orbital integrals [[electronic resource] /] / Jean-Michel Bismut
Hypoelliptic Laplacian and orbital integrals [[electronic resource] /] / Jean-Michel Bismut
Autore Bismut Jean-Michel
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, 2011
Descrizione fisica 1 online resource (320 p.)
Disciplina 515.7242
Collana Annals of mathematics studies
Soggetto topico Differential equations, Hypoelliptic
Laplacian operator
Definite integrals
Orbit method
Soggetto non controllato Bianchi identity
Brownian motion
Casimir operator
Clifford algebras
Clifford variables
Dirac operator
Euclidean vector space
Feynman-Kac formula
Gaussian integral
Gaussian type estimates
Heisenberg algebras
Kostant
Leftschetz formula
Littlewood-Paley decomposition
Malliavin calculus
Pontryagin maximum principle
Selberg's trace formula
Sobolev spaces
Toponogov's theorem
Witten complex
action functional
complexification
conjugations
convergence
convexity
de Rham complex
displacement function
distance function
elliptic Laplacian
elliptic orbital integrals
fixed point formulas
flat bundle
general kernels
general orbital integrals
geodesic flow
geodesics
harmonic oscillator
heat kernel
heat kernels
heat operators
hypoelliptic Laplacian
hypoelliptic deformation
hypoelliptic heat kernel
hypoelliptic heat kernels
hypoelliptic operators
hypoelliptic orbital integrals
index formulas
index theory
infinite dimensional orbital integrals
keat kernels
local index theory
locally symmetric space
matrix part
model operator
nondegeneracy
orbifolds
orbital integrals
parallel transport trivialization
probabilistic construction
pseudodistances
quantitative estimates
quartic term
real vector space
refined estimates
rescaled heat kernel
resolvents
return map
rough estimates
scalar heat kernel
scalar heat kernels
scalar hypoelliptic Laplacian
scalar hypoelliptic heat kernels
scalar hypoelliptic operator
scalar part
semisimple orbital integrals
smooth kernels
standard elliptic heat kernel
supertraces
symmetric space
symplectic vector space
trace formula
unbounded operators
uniform bounds
uniform estimates
variational problems
vector bundles
wave equation
wave kernel
wave operator
ISBN 1-283-16387-X
9786613163875
1-4008-4057-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Acknowledgments -- Introduction -- Chapter One. Clifford and Heisenberg algebras -- Chapter Two. The hypoelliptic Laplacian on X = G/K -- Chapter Three. The displacement function and the return map -- Chapter Four. Elliptic and hypoelliptic orbital integrals -- Chapter Five. Evaluation of supertraces for a model operator -- Chapter Six. A formula for semisimple orbital integrals -- Chapter Seven. An application to local index theory -- Chapter Eight. The case where [k (γ) ; p0] = 0 -- Chapter Nine. A proof of the main identity -- Chapter Ten. The action functional and the harmonic oscillator -- Chapter Eleven. The analysis of the hypoelliptic Laplacian -- Chapter Twelve. Rough estimates on the scalar heat kernel -- Chapter Thirteen. Refined estimates on the scalar heat kernel for bounded b -- Chapter Fourteen. The heat kernel qXb;t for bounded b -- Chapter Fifteen. The heat kernel qXb;t for b large -- Bibliography -- Subject Index -- Index of Notation
Record Nr. UNINA-9910781482503321
Bismut Jean-Michel  
Princeton, : Princeton University Press, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hypoelliptic Laplacian and orbital integrals / / Jean-Michel Bismut
Hypoelliptic Laplacian and orbital integrals / / Jean-Michel Bismut
Autore Bismut Jean-Michel
Edizione [Course Book]
Pubbl/distr/stampa Princeton, : Princeton University Press, 2011
Descrizione fisica 1 online resource (320 p.)
Disciplina 515.7242
Collana Annals of mathematics studies
Soggetto topico Differential equations, Hypoelliptic
Laplacian operator
Definite integrals
Orbit method
Soggetto non controllato Bianchi identity
Brownian motion
Casimir operator
Clifford algebras
Clifford variables
Dirac operator
Euclidean vector space
Feynman-Kac formula
Gaussian integral
Gaussian type estimates
Heisenberg algebras
Kostant
Leftschetz formula
Littlewood-Paley decomposition
Malliavin calculus
Pontryagin maximum principle
Selberg's trace formula
Sobolev spaces
Toponogov's theorem
Witten complex
action functional
complexification
conjugations
convergence
convexity
de Rham complex
displacement function
distance function
elliptic Laplacian
elliptic orbital integrals
fixed point formulas
flat bundle
general kernels
general orbital integrals
geodesic flow
geodesics
harmonic oscillator
heat kernel
heat kernels
heat operators
hypoelliptic Laplacian
hypoelliptic deformation
hypoelliptic heat kernel
hypoelliptic heat kernels
hypoelliptic operators
hypoelliptic orbital integrals
index formulas
index theory
infinite dimensional orbital integrals
keat kernels
local index theory
locally symmetric space
matrix part
model operator
nondegeneracy
orbifolds
orbital integrals
parallel transport trivialization
probabilistic construction
pseudodistances
quantitative estimates
quartic term
real vector space
refined estimates
rescaled heat kernel
resolvents
return map
rough estimates
scalar heat kernel
scalar heat kernels
scalar hypoelliptic Laplacian
scalar hypoelliptic heat kernels
scalar hypoelliptic operator
scalar part
semisimple orbital integrals
smooth kernels
standard elliptic heat kernel
supertraces
symmetric space
symplectic vector space
trace formula
unbounded operators
uniform bounds
uniform estimates
variational problems
vector bundles
wave equation
wave kernel
wave operator
ISBN 1-283-16387-X
9786613163875
1-4008-4057-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Acknowledgments -- Introduction -- Chapter One. Clifford and Heisenberg algebras -- Chapter Two. The hypoelliptic Laplacian on X = G/K -- Chapter Three. The displacement function and the return map -- Chapter Four. Elliptic and hypoelliptic orbital integrals -- Chapter Five. Evaluation of supertraces for a model operator -- Chapter Six. A formula for semisimple orbital integrals -- Chapter Seven. An application to local index theory -- Chapter Eight. The case where [k (γ) ; p0] = 0 -- Chapter Nine. A proof of the main identity -- Chapter Ten. The action functional and the harmonic oscillator -- Chapter Eleven. The analysis of the hypoelliptic Laplacian -- Chapter Twelve. Rough estimates on the scalar heat kernel -- Chapter Thirteen. Refined estimates on the scalar heat kernel for bounded b -- Chapter Fourteen. The heat kernel qXb;t for bounded b -- Chapter Fifteen. The heat kernel qXb;t for b large -- Bibliography -- Subject Index -- Index of Notation
Record Nr. UNINA-9910827349603321
Bismut Jean-Michel  
Princeton, : Princeton University Press, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui