top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications
ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications
Autore Tadono Takeo
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (240 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Environmental science, engineering & technology
Soggetto non controllato Sentinel-1
ALOS/PALSAR-2
land subsidence
accuracy assessment
Alexandria City
Egypt
local climate zone
random forest
feature importance
land surface temperature
grid cells
Sentinel-2
PALSAR-2
ASTER
soil moisture
ALOS-2
GA-BP
water cloud model
L-band
SAR
backscattering
soil moisture content
LAI
HH and HV polarization
flood
NoBADI
Florida
Hurricane Irma
synthetic aperture radar
polarimetric radar
co-polarized phase difference
radar scattering
vegetation
radar applications
agriculture
leaf area index
leave-one-out cross-validation
oil palm
radar vegetation index
vegetation descriptors
ecosystem carbon cycle
L-band SAR
vegetation index
random forest regression
plantation
permafrost
InSAR
Qinghai-Tibet Plateau
ALOS
thermal melting collapse
Sentinel-1A
SBAS-InSAR
heavy forest area
potential landslide identification
SAR-based landslide detection
Growing Split-Based Approach (GSBA)
Hokkaido landslide
Putanpunas landslide
SAR polarimetry
model-free 3-component decomposition for full polarimetric data (MF3CF)
radar polarimetry
calibration
Faraday rotation
ISBN 3-0365-6105-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639994803321
Tadono Takeo  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
UAVs for Vegetation Monitoring
UAVs for Vegetation Monitoring
Autore de Castro Megías Ana
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (452 p.)
Soggetto topico Research & information: general
Soggetto non controllato Acacia
agro-environmental measures
artificial intelligence
artificial neural network
banana
broad-sense heritability
canopy cover
canopy height
century-old biochar
chlorophyll content
CIELab
classification
close remote sensing
CNN
container-grown
contextual spatial domain/resolution
convolution neural network
cotton root rot
crop canopy
crop disease
crop mapping
crop monitoring
curve fitting
data aggregation
deep learning
detection performance
disease detection
disease diagnosis
disease monitoring
drone
drought tolerance
eddy covariance (EC)
evapotranspiration (ET)
Faster RCNN
flight altitude
forage grass
forest
Fusarium wilt
Glycine max
GRAPEX
growth model
high throughput field phenotyping
HSV
hyperspectral
image analysis
image segmentation
Inception v2
individual plant segmentation
Indonesia
inference time
land cover
least squares support vector machine
machine learning
maize tassel
method comparison
MobileNet v2
multiple linear regression
multiscale textures
multispectral
multispectral image
multispectral imagery
multispectral remote sensing
NDVI
neural network
nitrogen stress
nutrient deficiency
oil palm
olive groves
operating parameters
ornamental
patch-based CNN
phenotyping gap
plant detection
plant nitrogen estimation
plant segmentation
plant trails
plant-by-plant
plant-level
precision agriculture
purple rapeseed leaves
random forest
red-edge spectra
remote sensing
remote sensing technique
RGB
RGB camera
RGB imagery
semantic segmentation
single-plant
solar zenith angle
southern Spain
spatial resolution
SSD
sUAS
support vector machine
tassel branch number
texture
thermal
thermal camera
time of day
transfer learning
transpiration
tropics
Two Source Energy Balance model (TSEB)
U-Net
UAS
UAV
UAV digital images
UAV hyperspectral
UAV remote sensing
unmanned aerial vehicle
variable importance
vegetation cover
vegetation ground cover
vegetation index
vegetation indices
VGG16
visual recognition
water stress
weed detection
wheat yellow rust
winter wheat biomass
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557661103321
de Castro Megías Ana  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui