top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Current Trends and Future Directions in Prosthetic and Implant Dentistry in the Digital Era
Current Trends and Future Directions in Prosthetic and Implant Dentistry in the Digital Era
Autore Di Fiore Adolfo
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (146 p.)
Soggetto topico Medicine
Soggetto non controllato dental implants
digital impression
intraoral scanner
CAD/CAM materials
toothbrushing wear
surface
roughness
surface integrity
alveolar remodeling
tooth extraction
intraoral digital scanning
imaging superimposition
less traumatic surgery
socket healing
implantology
computer-aided surgery
image-guided surgery
zygomatic implants
navigation system
dental implant
bone level
prospective study
sub-crestal placement
emergence profile
guided surgery
digital workflow
stereolithographic surgical guide
accuracy
CAD–CAM
DICOM–STL
static guided surgery
clinical study
intraoral scanners
digital dentistry
impression techniques
full-arch impression
elderly population
dimensional measurement accuracy
implant scan
operator
precision
scan area
trueness
occlusion
overloading
complications
implant-supported restorations
marginal bone loss
oral implantology
intraoral scan
cone-beam computed tomography
oral surgery
emergence angle
retrospective study
ISBN 3-0365-6050-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639986203321
Di Fiore Adolfo  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS) / John Ball, Bo Tang
Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS) / John Ball, Bo Tang
Autore Ball John
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (344 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato FPGA
recurrence plot (RP)
residual learning
neural networks
driver monitoring
navigation
depthwise separable convolution
optimization
dynamic path-planning algorithms
object tracking
sub-region
cooperative systems
convolutional neural networks
DSRC
VANET
joystick
road scene
convolutional neural network (CNN)
multi-sensor
p-norm
occlusion
crash injury severity prediction
deep leaning
squeeze-and-excitation
electric vehicles
perception in challenging conditions
T-S fuzzy neural network
total vehicle mass of the front vehicle
electrocardiogram (ECG)
communications
generative adversarial nets
camera
adaptive classifier updating
Vehicle-to-X communications
convolutional neural network
predictive
Geobroadcast
infinity norm
urban object detector
machine learning
automated-manual transition
red light-running behaviors
photoplethysmogram (PPG)
panoramic image dataset
parallel architectures
visual tracking
autopilot
ADAS
kinematic control
GPU
road lane detection
obstacle detection and classification
Gabor convolution kernel
autonomous vehicle
Intelligent Transport Systems
driving decision-making model
Gaussian kernel
autonomous vehicles
enhanced learning
ethical and legal factors
kernel based MIL algorithm
image inpainting
fusion
terrestrial vehicle
driverless
drowsiness detection
map generation
object detection
interface
machine vision
driving assistance
blind spot detection
deep learning
relative speed
autonomous driving assistance system
discriminative correlation filter bank
recurrent neural network
emergency decisions
LiDAR
real-time object detection
vehicle dynamics
path planning
actuation systems
maneuver algorithm
autonomous driving
smart band
the emergency situations
two-wheeled
support vector machine model
global region
biological vision
automated driving
ISBN 9783039213764
3039213768
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367757403321
Ball John  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui