Advanced Numerical Methods in Applied Sciences |
Autore | Iavernaro Felice |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (306 p.) |
Soggetto non controllato |
structured matrices
numerical methods time fractional differential equations hierarchical splines finite difference methods null-space highly oscillatory problems stochastic Volterra integral equations displacement rank constrained Hamiltonian problems hyperbolic partial differential equations higher-order finite element methods continuous geometric average spectral (eigenvalue) and singular value distributions generalized locally Toeplitz sequences Volterra integro–differential equations B-spline discontinuous Galerkin methods adaptive methods Cholesky factorization energy-conserving methods order collocation method Poisson problems time harmonic Maxwell’s equations and magnetostatic problems tree multistep methods stochastic differential equations optimal basis finite difference method elementary differential gradient system curl–curl operator conservative problems line integral methods stochastic multistep methods Hamiltonian Boundary Value Methods limited memory boundary element method convergence analytical solution preconditioners asymptotic stability collocation methods histogram specification local refinement Runge–Kutta edge-preserving smoothing numerical analysis THB-splines BS methods barrier options stump shock waves and discontinuities mean-square stability Volterra integral equations high order discontinuous Galerkin finite element schemes B-splines vectorization and parallelization initial value problems one-step methods scientific computing fractional derivative linear systems Hamiltonian problems low rank completion ordinary differential equations mixed-index problems edge-histogram Hamiltonian PDEs matrix ODEs HBVMs floating strike Asian options Hermite–Obreshkov methods generalized Schur algorithm Galerkin method symplecticity high performance computing isogeometric analysis discretization of systems of differential equations |
ISBN | 3-03897-667-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910346690203321 |
Iavernaro Felice
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Degenerate diffusion operators arising in population biology [[electronic resource] /] / Charles L. Epstein and Rafe Mazzeo |
Autore | Epstein Charles L |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, : Princeton University Press, 2013 |
Descrizione fisica | 1 online resource (321 p.) |
Disciplina | 577.8/801519233 |
Altri autori (Persone) | MazzeoRafe |
Collana | Annals of mathematics studies |
Soggetto topico |
Elliptic operators
Markov processes Population biology - Mathematical models |
Soggetto non controllato |
1-dimensional integral
Euclidean model problem Euclidean space Hlder space Hopf boundary point Kimura diffusion equation Kimura diffusion operator Laplace transform Schauder estimate WrightІisher geometry adjoint operator backward Kolmogorov equation boundary behavior degenerate elliptic operator doubling elliptic Kimura operator elliptic equation forward Kolmogorov equation function space general model problem generalized Kimura diffusion heat equation heat kernel higher dimensional corner higher regularity holomorphic semi-group homogeneous Cauchy problem hybrid space hypersurface boundary induction hypothesis induction inhomogeneous problem irregular solution long time asymptotics long-time behavior manifold with corners martingale problem mathematical finance model problem normal form normal vector null-space off-diagonal behavior open orthant parabolic equation perturbation theory polyhedron population genetics probability theory regularity resolvent operator semi-group solution operator uniqueness |
ISBN |
1-4008-4718-4
1-299-05145-6 1-4008-4610-2 |
Classificazione | SI 830 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Chapter 1. Introduction -- Part I. Wright-Fisher Geometry and the Maximum Principle -- Chapter 2. Wright-Fisher Geometry -- Chapter 3. Maximum Principles and Uniqueness Theorems -- Part II. Analysis of Model Problems -- Chapter 4. The Model Solution Operators -- Chapter 5. Degenerate Hölder Spaces -- Chapter 6. Hölder Estimates for the 1-dimensional Model Problems -- Chapter 7. Hölder Estimates for Higher Dimensional Corner Models -- Chapter 8. Hölder Estimates for Euclidean Models -- Chapter 9. Hölder Estimates for General Models -- Part III. Analysis of Generalized Kimura Diffusions -- Chapter 10. Existence of Solutions -- Chapter 11. The Resolvent Operator -- Chapter 12. The Semi-group on ℂ°(P) -- Appendix A: Proofs of Estimates for the Degenerate 1-d Model -- Bibliography -- Index |
Record Nr. | UNINA-9910786024003321 |
Epstein Charles L
![]() |
||
Princeton, : Princeton University Press, 2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|