AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD) / / Kuan-Chuan Peng, Ziyan Wu |
Autore | Peng Kuan-Chuan |
Pubbl/distr/stampa | Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2022 |
Descrizione fisica | 1 electronic resource (186 p.) |
Disciplina | 006.3 |
Soggetto topico |
Technology: general issues
Artificial intelligence History of engineering & technology |
Soggetto non controllato |
permutation equivariance
optimization gender bias fairness face-recognition models facial attributes social bias bias detection natural language processing temporal bias forecasting contrastive learning supervised contrastive learning transfer learning robustness noisy labels coresets deep learning contextualized embeddings out-of-distribution generalization |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | About the Editors -- Statement of Peer Review -- Electricity Consumption Forecasting for Out-of-Distribution Time-of-Use Tariffs -- Measuring Embedded Human-Like Biases in Face Recognition Models -- Measuring Gender Bias in Contextualized Embeddings -- The Details Matter: Preventing Class Collapsein Supervised Contrastive Learning -- DAP-SDD: Distribution-Aware Pseudo Labeling for Small Defect Detection -- Quantifying Bias in a Face -- Verification System -- Super-Resolution for Brain MR Images from a Significantly Small Amount of Training Data -- Dual Complementary Prototype Learning for Few-Shot Segmentation -- Extracting Salient Facts from Company Reviews with Scarce Labels -- Long-Tail Zero and Few-Shot Learning via Contrastive Pretraining on and for Small Data -- Age Should Not Matter: -- Towards More Accurate Pedestrian Detection via Self-Training. |
Altri titoli varianti | AAAI Workshop on Artificial Intelligence with Biased or Scarce Data |
Record Nr. | UNINA-9910585937403321 |
Peng Kuan-Chuan
![]() |
||
Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements |
Autore | Das Monidipa |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (112 p.) |
Soggetto topico |
Research & information: general
Environmental economics |
Soggetto non controllato |
scene classification
teacher-student noisy labels knowledge distillation remote sensing images LightGBM spatiotemporal weight interpolation AOD recovery East Asia polarized SAR optical image random forest conditional random fields feature-level fusion Dirichlet process infinite mixture models Gamma distribution variational inference online setting oil spill detection synthetic aperture radar images GNSS-R CYGNSS high wind speed inversion SVR PCA-SVR CNN |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910585940903321 |
Das Monidipa
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|