top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Neural Networks in Agriculture
Artificial Neural Networks in Agriculture
Autore Kujawa Sebastian
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (283 p.)
Soggetto topico Research & information: general
Biology, life sciences
Technology, engineering, agriculture
Soggetto non controllato artificial neural network (ANN)
Grain weevil identification
neural modelling classification
winter wheat
grain
artificial neural network
ferulic acid
deoxynivalenol
nivalenol
MLP network
sensitivity analysis
precision agriculture
machine learning
similarity
metric
memory
deep learning
plant growth
dynamic response
root zone temperature
dynamic model
NARX neural networks
hydroponics
vegetation indices
UAV
neural network
corn plant density
corn canopy cover
yield prediction
CLQ
GA-BPNN
GPP-driven spectral model
rice phenology
EBK
correlation filter
crop yield prediction
hybrid feature extraction
recursive feature elimination wrapper
artificial neural networks
big data
classification
high-throughput phenotyping
modeling
predicting
time series forecasting
soybean
food production
paddy rice mapping
dynamic time warping
LSTM
weakly supervised learning
cropland mapping
apparent soil electrical conductivity (ECa)
magnetic susceptibility (MS)
EM38
neural networks
Phoenix dactylifera L.
Medjool dates
image classification
convolutional neural networks
transfer learning
average degree of coverage
coverage unevenness coefficient
optimization
high-resolution imagery
oil palm tree
CNN
Faster-RCNN
image identification
agroecology
weeds
yield gap
environment
health
crop models
soil and plant nutrition
automated harvesting
model application for sustainable agriculture
remote sensing for agriculture
decision supporting systems
neural image analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557509803321
Kujawa Sebastian  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fusarium : Mycotoxins, Taxonomy and Pathogenicity
Fusarium : Mycotoxins, Taxonomy and Pathogenicity
Autore Stępień Łukasz
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (262 p.)
Soggetto topico Research & information: general
Biology, life sciences
Technology, engineering, agriculture
Soggetto non controllato Fusarium head blight
Fusarium species
soil minerals
mycotoxins
organic farming
sowing value
winter wheat
Maize
Fusarium
monitoring
forage
silage
maize ear rot
nivalenol
fumonisins
flax
Fusarium oxysporum
pathogenic and non-pathogenic strains
sensitization
DNA methylation
PR genes
ear rot
maize
FUM1
pathogenicity
virulence
Fusarium graminearum
next-generation sequencing
proteomics
photobiology
transcription factor
White collar complex
Fusarium asiaticum
colonization
endophyte
Fo47
wilt disease
fusarium
LC-MS/MS
mycotoxin
occurrence
wheat
trichothecene
NF-κB
intestinal inflammation
combinatory effects
food safety
resistance expression
aggressiveness
F. graminearum
F. culmorum
isolate effect
disease index
Fusarium-damaged kernel
deoxynivalenol
susceptibility window
inoculation time and FHB response
keratomycosis
onychomycosis
horizontal cross-kingdom
disease index (DI)
fusarium damaged kernels (FDK)
deoxynivalenol (DON)
host-pathogen relations
phenotyping FHB
Cereals
silo
fungi
modelling
3D colonisation
respiration
ergosterol
zearalenone
trichothecenes
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Fusarium
Record Nr. UNINA-9910557660703321
Stępień Łukasz  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui