top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Neural Networks in Agriculture
Artificial Neural Networks in Agriculture
Autore Kujawa Sebastian
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (283 p.)
Soggetto topico Biology, life sciences
Research & information: general
Technology, engineering, agriculture
Soggetto non controllato agroecology
apparent soil electrical conductivity (ECa)
artificial neural network
artificial neural network (ANN)
artificial neural networks
automated harvesting
average degree of coverage
big data
classification
CLQ
CNN
convolutional neural networks
corn canopy cover
corn plant density
correlation filter
coverage unevenness coefficient
crop models
crop yield prediction
cropland mapping
decision supporting systems
deep learning
deoxynivalenol
dynamic model
dynamic response
dynamic time warping
EBK
EM38
environment
Faster-RCNN
ferulic acid
food production
GA-BPNN
GPP-driven spectral model
grain
Grain weevil identification
health
high-resolution imagery
high-throughput phenotyping
hybrid feature extraction
hydroponics
image classification
image identification
LSTM
machine learning
magnetic susceptibility (MS)
Medjool dates
memory
metric
MLP network
model application for sustainable agriculture
modeling
NARX neural networks
neural image analysis
neural modelling classification
neural network
neural networks
nivalenol
oil palm tree
optimization
paddy rice mapping
Phoenix dactylifera L.
plant growth
precision agriculture
predicting
recursive feature elimination wrapper
remote sensing for agriculture
rice phenology
root zone temperature
sensitivity analysis
similarity
soil and plant nutrition
soybean
time series forecasting
transfer learning
UAV
vegetation indices
weakly supervised learning
weeds
winter wheat
yield gap
yield prediction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557509803321
Kujawa Sebastian  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fusarium : Mycotoxins, Taxonomy and Pathogenicity
Fusarium : Mycotoxins, Taxonomy and Pathogenicity
Autore Stępień Łukasz
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (262 p.)
Soggetto topico Biology, life sciences
Research & information: general
Technology, engineering, agriculture
Soggetto non controllato 3D colonisation
aggressiveness
Cereals
colonization
combinatory effects
deoxynivalenol
deoxynivalenol (DON)
disease index
disease index (DI)
DNA methylation
ear rot
endophyte
ergosterol
F. culmorum
F. graminearum
flax
Fo47
food safety
forage
FUM1
fumonisins
fungi
fusarium
Fusarium
Fusarium asiaticum
fusarium damaged kernels (FDK)
Fusarium graminearum
Fusarium head blight
Fusarium oxysporum
Fusarium species
Fusarium-damaged kernel
horizontal cross-kingdom
host-pathogen relations
inoculation time and FHB response
intestinal inflammation
isolate effect
keratomycosis
LC-MS/MS
maize
Maize
maize ear rot
modelling
monitoring
mycotoxin
mycotoxins
n/a
next-generation sequencing
NF-κB
nivalenol
occurrence
onychomycosis
organic farming
pathogenic and non-pathogenic strains
pathogenicity
phenotyping FHB
photobiology
PR genes
proteomics
resistance expression
respiration
sensitization
silage
silo
soil minerals
sowing value
susceptibility window
transcription factor
trichothecene
trichothecenes
virulence
wheat
White collar complex
wilt disease
winter wheat
zearalenone
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Fusarium
Record Nr. UNINA-9910557660703321
Stępień Łukasz  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui