top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
Autore Suñé Jordi
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (244 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato AI
artificial intelligence
artificial neural network
artificial synapse
autocovariance
boost-factor adjustment
character recognition
circuit design
compact model
cortical neurons
crossbar array
deep learning networks
defect-tolerant spatial pooling
electronic synapses
emulator
Flash memories
graphene oxide
hardware-based deep learning ICs
hierarchical temporal memory
laser
memristive devices
memristor
memristor crossbar
memristor-CMOS hybrid circuit
memristors
multiscale modeling
neocortex
neural network hardware
neural networks
neuromorphic
neuromorphic computing
neuromorphic engineering
neuromorphic hardware
neuromorphic systems
neuromorphics
optimization
OxRAM
pattern recognition
pavlov
reinforcement learning
resistive switching
RRAM
self-organization maps
sensory and hippocampal responses
simulation
spike-timing-dependent plasticity
spiking neural network
spiking neural networks
STDP
strongly correlated oxides
synapse
synaptic device
synaptic plasticity
synaptic weight
temporal pooling
time series modeling
transistor-like devices
variability
vertical RRAM
wire resistance
ISBN 3-03928-577-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404090703321
Suñé Jordi  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spiking Neural Network Learning, Benchmarking, Programming and Executing
Spiking Neural Network Learning, Benchmarking, Programming and Executing
Autore Li Guoqi
Pubbl/distr/stampa Frontiers Media SA, 2020
Descrizione fisica 1 online resource (234 p.)
Soggetto topico Neurosciences
Science: general issues
Soggetto non controllato deep spiking neural networks
neuromorphics
programming framework
SNN benchmarks
SNN learning algorithms
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557631803321
Li Guoqi  
Frontiers Media SA, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui