Circles disturbed [[electronic resource] ] : the interplay of mathematics and narrative / / edited by Apostolos Doxiadis and Barry Mazur
| Circles disturbed [[electronic resource] ] : the interplay of mathematics and narrative / / edited by Apostolos Doxiadis and Barry Mazur |
| Edizione | [Core Textbook] |
| Pubbl/distr/stampa | Princeton, : Princeton University Press, c2012 |
| Descrizione fisica | 1 online resource (593 p.) |
| Disciplina | 510.1/4 |
| Altri autori (Persone) |
DoxiadēsApostolos K. <1953->
MazurBarry |
| Soggetto topico |
Mathematics - Language
Communication in mathematics Mathematics - History |
| Soggetto non controllato |
Alasdair MacIntyre
Archimedes Aristotle Bleak House Borel sets Bourbaki Carl Friedrich Gauss David Hilbert Emmy Noether Enlightenment G. E. R. Lloyd Georg Cantor Greece Jean-Pierre Vernant John Archibald Wheeler K-ness L'Algebra Leo Perutz Leopold Kronecker Middlemarch Paul Gordan Plato Rafael Bombelli Robert Thomason ThomasonДrobaugh article Tom Trobaugh abstraction aesthetic contingency algebra automated theorem provers axiomatic mathematics belief chiasmus clues cognitive meaning compound machines computational modeling computer simulations cubic equations deductive mathematics diagramma dreams energeia epistemology existential contingency explanation exploration mathematics finiteness theorems focalization forensic rhetoric formal models geometry ghost ghostwriter group highest common factor imaginary numbers incommensurability intuition irony literary narrative literature machine metaphor mathematical argument mathematical concepts mathematical enquiry mathematical line mathematical modeling mathematical models mathematical objects mathematical physics mathematicians mathematics metanarratology metaphor myth narrative analysis narrative representation narrative subjectivity narrative narratology negative numbers non-Euclidean epistemology non-Euclidean geometry non-Euclidean mathematics non-Euclidean physics non-Euclidean thinking orthe permutation groups perspective poetic storytelling polynomial equations proof quantum mechanics rational enquiry rationality reality scientific inquiry square roots story generator algorithm story grammars story storytelling structural linguistics symbols theology theorems tragic mathematical heroes truth variste Galois vestibular line visions visual line vividness |
| ISBN |
1-283-45704-0
9786613457042 1-4008-4268-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 1. From Voyagers to Martyrs / Alexander, Amir -- Chapter 2. Structure of Crystal, Bucket of Dust / Galison, Peter -- Chapter 3. Deductive Narrative and the Epistemological Function of Belief in Mathematics / Nave, Federicala -- Chapter 4. Hilbert on Theology and Its Discontents / Mclarty, Colin -- Chapter 5. Do Androids Prove Theorems in Their Sleep? / Harris, Michael -- Chapter 6. Visions, Dreams, and Mathematics / Mazur, Barry -- Chapter 7. Vividness in Mathematics and Narrative / Gowers, Timothy -- Chapter 8. Mathematics and Narrative / Teissier, Bernard -- Chapter 9. Narrative and the Rationality of Mathematical Practice / Corfield, David -- Chapter 10. A Streetcar Named (among Other Things) Proof / Doxiadis, Apostolos -- Chapter 11. Mathematics and Narrative: An Aristotelian Perspective / Lloyd, G . E . R . -- Chapter 12. Adventures of the Diagonal: Non-Euclidean Mathematics and Narrative / Plotnitsky, Arkady -- Chapter 13. Formal Models in Narrative Analysis / Herman, David -- Chapter 14. Mathematics and Narrative: A Narratological Perspective / Margolin, Uri -- Chapter 15. Tales of Contingency, Contingencies of Telling / Meister, Jan Christoph -- Contributors -- Index |
| Record Nr. | UNINA-9910778928403321 |
| Princeton, : Princeton University Press, c2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Making and Breaking Mathematical Sense : Histories and Philosophies of Mathematical Practice / / Roi Wagner
| Making and Breaking Mathematical Sense : Histories and Philosophies of Mathematical Practice / / Roi Wagner |
| Autore | Wagner Roi |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2017] |
| Descrizione fisica | 1 online resource (251 pages) |
| Disciplina | 510.1 |
| Soggetto topico |
Mathematics - Philosophy - History
Mathematics - History |
| Soggetto genere / forma |
History
Electronic books. |
| Soggetto non controllato |
Benedetto
Black-Scholes formula Eugene Wigner Friedrich W.J. Schelling George Lakoff Gilles Deleuze Hermann Cohen Hilary Putnam Johann G. Fichte Logic of Sensation Mark Steiner Rafael Nez Stanislas Dehaene Vincent Walsh Water J. Freeman III abbaco algebra arithmetic authority cognitive theory combinatorics conceptual freedom constraints economy gender role stereotypes generating functions geometry inferences infinities infinity mathematical cognition mathematical concepts mathematical cultures mathematical domains mathematical entities mathematical evolution mathematical interpretation mathematical language mathematical metaphor mathematical norms mathematical objects mathematical practice mathematical signs mathematical standards mathematical statements mathematics natural order natural sciences nature negative numbers number sense option pricing philosophy of mathematics reality reason relevance semiosis sexuality stable marriage problem |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title; Copyright; Dedication; Contents; Acknowledgments; Introduction; What Philosophy of Mathematics Is Today; What Else Philosophy of Mathematics Can Be; A Vignette: Option Pricing and the Black-Scholes Formula; Outline of This Book; Chapter 1: Histories of Philosophies of Mathematics; History 1: On What There Is, Which Is a Tension between Natural Order and Conceptual Freedom; History 2: The Kantian Matrix, Which Grants Mathematics a Constitutive Intermediary Epistemological Position; History 3: Monster Barring, Monster Taming, and Living with Mathematical Monsters.
History 4: Authority, or Who Gets to Decide What Mathematics Is AboutThe "Yes, Please!" Philosophy of Mathematics; Chapter 2: The New Entities of Abbacus and Renaissance Algebra; Abbacus and Renaissance Algebraists; The Emergence of the Sign of the Unknown; First Intermediary Reflection; The Arithmetic of Debited Values; Second Intermediary Reflection; False and Sophistic Entities; Final Reflection and Conclusion; Chapter 3: A Constraints-Based Philosophy of Mathematical Practice; Dismotivation; The Analytic A Posteriori; Consensus; Interpretation; Reality; Constraints; Relevance; Conclusion. Chapter 4: Two Case Studies of Semiosis in MathematicsAmbiguous Variables in Generating Functions; Between Formal Interpretations; Models and Applications; Openness to Interpretation; Gendered Signs in a Combinatorial Problem; The Problem; Gender Role Stereotypes and Mathematical Results; Mathematical Language and Its Reality; The Forking Paths of Mathematical Language; Chapter 5: Mathematics and Cognition; The Number Sense; Mathematical Metaphors; Some Challenges to the Theory of Mathematical Metaphors; Best Fit for Whom?; What Is a Conceptual Domain?; In Which Direction Does the Theory Go? So How Should We Think about Mathematical Metaphors?An Alternative Neural Picture; Another Vision of Mathematical Cognition; From Diagrams to Haptic Vision; Haptic Vision in Practice; Chapter 6: Mathematical Metaphors Gone Wild; What Passes between Algebra and Geometry; Piero della Francesca (Italy, Fifteenth Century); Omar Khayyam (Central Asia, Eleventh Century); Rene Descartes (France, Seventeenth Century); Rafael Bombelli (Italy, Sixteenth Century); Conclusion; A Garden of Infinities; Limits; Infinitesimals and Actual Infinities; Chapter 7: Making a World, Mathematically; Fichte. SchellingHermann Cohen; The Unreasonable Applicability of Mathematics; Bibliography; Index. |
| Record Nr. | UNINA-9910154298703321 |
Wagner Roi
|
||
| Princeton, NJ : , : Princeton University Press, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||