top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Autore Aranha José
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (276 p.)
Soggetto topico Geography
Research and information: general
Soggetto non controllato above-ground biomass
aboveground biomass
AGB estimation and mapping
allometric equation
ALOS DSM
ALOS-2 L band SAR
bark roughness
bioenergy
biomass density
biomass estimation
DBH
diameter at breast height
ecosystem services
forest AGC estimation
forest biomass estimation
forest growing stock volume
forest inventory data
forest succession
forest type
GEOMON
GIS
individual tree detection
landsat
Landsat 8 OLI
Landsat dataset
leaf area index
LiDAR
machine learning
machine learning algorithms
mangroves
map quality
multiple ES interactions
multisource remote sensing
nondestructive method
norway spruce
ordinary kriging
Pinus massoniana plantations
plant area index
random forest
remote sensing
seasonal images
sentinel 2
Sentinel-1 C band SAR
Sentinel-2 MSI
Sentinel-2A
shrubs biomass
spatiotemporal evolution
SPOT6 imagery
stand volume
stepwise regression
subtropical forest
subtropical forests
support vector machine for regression
synergy
terrestrial laser scanning
trade-off
tree height
UAV LiDAR
urban vegetation
valley basin
variable selection
vegetation indices
WorldView-2
Xuzhou
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557474803321
Aranha José  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters / Hongliang Fang, Juanma Lopez Sanchez, Francisco Javier García-Haro
Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters / Hongliang Fang, Juanma Lopez Sanchez, Francisco Javier García-Haro
Autore Fang Hongliang
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (334 p.)
Soggetto non controllato artificial neural network
downscaling
simulation
3D point cloud
European beech
consistency
adaptive threshold
evaluation
photosynthesis
geographic information system
P-band PolInSAR
validation
density-based clustering
structure from motion (SfM)
EPIC
Tanzania
signal attenuation
trunk
canopy closure
REDD+
unmanned aerial vehicle (UAV)
forest
recursive feature elimination
Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR)
aboveground biomass
random forest
uncertainty
household survey
spectral information
forests biomass
root biomass
biomass
unmanned aerial vehicle
Brazilian Amazon
VIIRS
global positioning system
LAI
photochemical reflectance index (PRI)
allometric scaling and resource limitation
R690/R630
modelling aboveground biomass
leaf area index
forest degradation
spectral analyses
terrestrial laser scanning
BAAPA
leaf area index (LAI)
stem volume estimation
tomographic profiles
polarization coherence tomography (PCT)
canopy gap fraction
automated classification
HemiView
remote sensing
multisource remote sensing
Pléiades imagery
photogrammetric point cloud
farm types
terrestrial LiDAR
altitude
RapidEye
forest aboveground biomass
recovery
southern U.S. forests
NDVI
machine-learning
conifer forest
satellite
chlorophyll fluorescence (ChlF)
tree heights
phenology
point cloud
local maxima
clumping index
MODIS
digital aerial photograph
Mediterranean
hemispherical sky-oriented photo
managed temperate coniferous forests
fixed tree window size
drought
GLAS
smartphone-based method
forest above ground biomass (AGB)
forest inventory
over and understory cover
sampling design
ISBN 9783039212408
3039212400
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367563203321
Fang Hongliang  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui