top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass
Autore Aranha José
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (276 p.)
Soggetto topico Research & information: general
Geography
Soggetto non controllato AGB estimation and mapping
mangroves
UAV LiDAR
WorldView-2
terrestrial laser scanning
above-ground biomass
nondestructive method
DBH
bark roughness
Landsat dataset
forest AGC estimation
random forest
spatiotemporal evolution
aboveground biomass
variable selection
forest type
machine learning
subtropical forests
Landsat 8 OLI
seasonal images
stepwise regression
map quality
subtropical forest
urban vegetation
biomass estimation
Sentinel-2A
Xuzhou
forest biomass estimation
forest inventory data
multisource remote sensing
biomass density
ecosystem services
trade-off
synergy
multiple ES interactions
valley basin
norway spruce
LiDAR
allometric equation
individual tree detection
tree height
diameter at breast height
GEOMON
ALOS-2 L band SAR
Sentinel-1 C band SAR
Sentinel-2 MSI
ALOS DSM
stand volume
support vector machine for regression
ordinary kriging
forest succession
leaf area index
plant area index
machine learning algorithms
forest growing stock volume
SPOT6 imagery
Pinus massoniana plantations
sentinel 2
landsat
remote sensing
GIS
shrubs biomass
bioenergy
vegetation indices
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557474803321
Aranha José  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters
Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters
Autore Sanchez Juanma Lopez
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (334 p.)
Soggetto non controllato artificial neural network
downscaling
simulation
3D point cloud
European beech
consistency
adaptive threshold
evaluation
photosynthesis
geographic information system
P-band PolInSAR
validation
density-based clustering
structure from motion (SfM)
EPIC
Tanzania
signal attenuation
trunk
canopy closure
REDD+
unmanned aerial vehicle (UAV)
forest
recursive feature elimination
Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR)
aboveground biomass
random forest
uncertainty
household survey
spectral information
forests biomass
root biomass
biomass
unmanned aerial vehicle
Brazilian Amazon
VIIRS
global positioning system
LAI
photochemical reflectance index (PRI)
allometric scaling and resource limitation
R690/R630
modelling aboveground biomass
leaf area index
forest degradation
spectral analyses
terrestrial laser scanning
BAAPA
leaf area index (LAI)
stem volume estimation
tomographic profiles
polarization coherence tomography (PCT)
canopy gap fraction
automated classification
HemiView
remote sensing
multisource remote sensing
Pléiades imagery
photogrammetric point cloud
farm types
terrestrial LiDAR
altitude
RapidEye
forest aboveground biomass
recovery
southern U.S. forests
NDVI
machine-learning
conifer forest
satellite
chlorophyll fluorescence (ChlF)
tree heights
phenology
point cloud
local maxima
clumping index
MODIS
digital aerial photograph
Mediterranean
hemispherical sky-oriented photo
managed temperate coniferous forests
fixed tree window size
drought
GLAS
smartphone-based method
forest above ground biomass (AGB)
forest inventory
over and understory cover
sampling design
ISBN 3-03921-240-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Remote Sensing of Leaf Area Index
Record Nr. UNINA-9910367563203321
Sanchez Juanma Lopez  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui