top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning in Medical Image Analysis
Deep Learning in Medical Image Analysis
Autore Zhang Yudong
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (458 p.)
Soggetto non controllato 1D-convolutional neural network
3D segmentation
active surface
ARMD
artificial intelligence
autism
bayesian inference
black box
brain tumor
breast cancer
cancer
cancer prediction
cervical cancer
change detection
classifiers
colon cancer
computation
computed tomography (CT)
computer vision
computers in medicine
convolutional neural network
convolutional neural networks
COVID-19
CycleGAN
data augmentation
deep learning
deep learning classification
dermoscopic images
diagnosis
diagnostics
digital pathology
discriminant analysis
domain adaptation
domain transfer
ECG signal detection
egocentric camera
explainability
explainable AI
fMRI
gibbs sampling
glcm matrix
HER2
image classification
image processing
image reconstruction
imaging
infection detection
interpretable/explainable machine learning
low-dose
lung cancer
lung disease detection
machine learning
machine learning models
macroscopic images
magnetic resonance imaging (MRI)
MCMC
medical image analysis
medical image segmentation
medical images
medical imaging
melanoma
meta-learning
microwave breast imaging
MRI
multimodal learning
multiple instance learning
musculoskeletal images
n/a
neo-adjuvant treatment
object detection
open surgery
optimizers
PET imaging
portable monitoring devices
quantitative comparison
segmentation
shifted-scaled dirichlet distribution
skin lesion segmentation
sparse-angle
surgical tools
taxonomy
texture analysis
transfer learning
tumor detection
tumour cellularity
U-Net
unsupervised learning
white box
whole slide image processing
X-ray images
XAI
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557435103321
Zhang Yudong  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Innovative Learning Environments in STEM Higher Education [[electronic resource] ] : Opportunities, Challenges, and Looking Forward / / edited by Jungwoo Ryoo, Kurt Winkelmann
Innovative Learning Environments in STEM Higher Education [[electronic resource] ] : Opportunities, Challenges, and Looking Forward / / edited by Jungwoo Ryoo, Kurt Winkelmann
Autore Ryoo Jungwoo
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (XV, 137 p. 8 illus., 7 illus. in color.)
Disciplina 519.5
Collana SpringerBriefs in Statistics
Soggetto topico Statistics 
Machine learning
Learning
Instruction
Knowledge representation (Information theory) 
Statistics for Social Sciences, Humanities, Law
Machine Learning
Statistics and Computing/Statistics Programs
Learning & Instruction
Knowledge based Systems
Educació STEM
Educació superior
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Statistics for Social Sciences, Humanities, Law
Machine Learning
Statistics and Computing/Statistics Programs
Learning & Instruction
Knowledge based Systems
Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy
Statistics and Computing
Education
Innovative Learning Environments
ILEs
Science, Technology, Engineering, and Math
STEM
virtual reality
VR
augmented reality
mixed reality
cross reality
extended reality
artificial intelligence
AI
adaptive learning
personalized learning
higher education
multimodal learning
mobile learning
Open Access
Social research & statistics
Mathematical & statistical software
Teaching skills & techniques
Cognition & cognitive psychology
Expert systems / knowledge-based systems
ISBN 3-030-58948-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. X-FILEs Vision for personalized and Adaptive Learning -- 3. X-FILEs Vision for Multi-modal Learning Formats -- 4. X-FILEs Vision for Extended/Cross Reality (XR) -- 5. X-FILEs Vision for Artificial Intelligence (AI) and Machine Learning (ML) -- 6. Cross-Cutting Concerns -- 7. Epilogue.
Record Nr. UNISA-996466564503316
Ryoo Jungwoo  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui