Vai al contenuto principale della pagina

Visual and Camera Sensors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Park Kang Ryoung Visualizza persona
Titolo: Visual and Camera Sensors Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 electronic resource (274 p.)
Soggetto topico: Information technology industries
Soggetto non controllato: self-assembly device
3D point clouds
accuracy analysis
VSLAM-photogrammetric algorithm
portable mobile mapping system
low-cost device
BIM
camera calibration
DLT
PnP
weighted DLT
uncertainty
covariance
robustness
visual-inertial
semi-direct SLAM
multi-sensor fusion
side-rear-view monitoring system
automatic online calibration
Hough-space
unmanned aerial vehicle
autonomous landing
deep-learning-based motion deblurring and marker detection
network slimming
pruning model
convolutional neural network
convolutional filter
classification
multimodal human recognition
blur image restoration
DeblurGAN
CNN
facial expression recognition system
computer vision
multi-scale featured local binary pattern
unsharp masking
machine learning
lens distortion
DoF-dependent
distortion partition
vision measurement
pathological site classification
in vivo endoscopy
computer-aided diagnosis
artificial intelligence
ensemble learning
convolutional auto-encoders
local image patch
point pair feature
plank recognition
robotic grasping
flying object detection
drone
image processing
camera networks
open-pit mine slope monitoring
optimum deployment
close range photogrammetry
three-dimensional reconstruction
OCD4M
Persona (resp. second.): LeeSangyoun
KimEuntai
ParkKang Ryoung
Sommario/riassunto: This book includes 13 papers published in Special Issue ("Visual and Camera Sensors") of the journal Sensors. The goal of this Special Issue was to invite high-quality, state-of-the-art research papers dealing with challenging issues in visual and camera sensors.
Titolo autorizzato: Visual and Camera Sensors  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557360203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui