Multiple-Criteria Decision-Making (MCDM) Techniques for Business Processes Information Management
| Multiple-Criteria Decision-Making (MCDM) Techniques for Business Processes Information Management |
| Autore | Antuchevi?ien? Jurgita |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 online resource (320 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
adaptive neuro-fuzzy inference system (ANFIS)
aggregation operator aggregation operators ANFIS bi-directional projection model binary discernibility matrices decision making desirability function deterministic finite automata Dombi operations Einstein operations evidence theory fuzzy EDAS fuzzy sets green supplier group decision-making hesitant probabilistic fuzzy Einstein aggregation operators hesitant probabilistic fuzzy element (HPFE) interaction operational laws interactive approach interval multiplicative preference relations linguistic cubic variable linguistic cubic variable Dombi weighted arithmetic average (LCVDWAA) operator linguistic cubic variable Dombi weighted geometric average (LCVDWGA) operator logistics MADM maximizing deviation model MCDM Muirhead mean multi-attribute decision making multi-attribute decision-making (MADM) multi-attribute group decision-making multi-criteria decision-making multi-hesitant fuzzy sets multiobjective optimization multiple attribute decision making multiple attribute decision making (MADM) multiple attributes decision-making multiple criteria decision making (MCDM) multiple criteria decision-making multiple criteria group decision-making multiple-criteria decision-making (MCDM) neutrosophic sets nonnegative normal neutrosophic number order allocation prioritized average operator projection model Pythagorean fuzzy set Pythagorean uncertain linguistic variable queuing systems reliable group decision-making rough analytical hierarchical process (AHP) rough ANP rough boundary interval rough number rough sets rough weighted aggregated sum product assessment (WASPAS) score function single-valued linguistic neutrosophic interval linguistic number subcontractor evaluation supplier supplier selection trapezoidal fuzzy number trust interval unbalanced linguistic set uncertain group decision-making support systems warehouse weighted aggregation operator |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Multiple-Criteria Decision-Making |
| Record Nr. | UNINA-9910346836503321 |
Antuchevi?ien? Jurgita
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
New Challenges in Neutrosophic Theory and Applications
| New Challenges in Neutrosophic Theory and Applications |
| Autore | Vladutescu Stefan |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (348 p.) |
| Soggetto topico |
Mathematics and Science
Research and information: general |
| Soggetto non controllato |
Abel-Grassmann's neutrosophic extended triplet loop
acceptance number aggregation operator bipolar fuzzy set bipolar neutrosophic number (BNN) Birnbaum-Sunders distribution BNN improved generalized weighted geometry HM (BNNIGWGHM) operator BNN improved generalized weighted HM (BNNIGWHM) operator CA-groupoid combined weighted control chart decision making decision-making diagnosis distance measure dynamic interval-valued neutrosophic set dynamic neutrosophic environment entropy measure financial assets fresh aquatic products fuzzy logic fuzzy OC band fuzzy operating characteristic curve generalized Abel-Grassmann's neutrosophic extended triplet loop generalized neutrosophic compact and generalized neutrosophic compact granular computing Green relation idemponents indeterminacy interval-valued neutrosophic information Linguistic neutrosophic LNN Einstein weighted-average operator LNN Einstein weighted-geometry (LNNEWG) operator logarithmic distance measure MAGDM merger and acquisition target selections modulo neutrosophic rings monitoring multi-attribute group decision-making multi-criteria decision-making (MCDM) multiattributedecision-making (MADM) multigranulation probabilistic models multiple attribute group decision making (MAGDM) neutrosophic neutrosophic g p T 1 2 space neutrosophic p T 1 2 space neutrosophic approach neutrosophic covariance neutrosophic cubic Einstein hybrid geometric operator neutrosophic cubic hybrid geometric operator neutrosophic cubic set neutrosophic extended triplet (NET) neutrosophic generalized pre-closed sets neutrosophic generalized pre-open sets neutrosophic generalized topology neutrosophic logic neutrosophic multigroups neutrosophic multisets neutrosophic multisubgroups neutrosophic numbers neutrosophic portfolio return neutrosophic portfolio risk Neutrosophic Quadruple (NQ) Neutrosophic Quadruple set neutrosophic ring neutrosophic rings neutrosophic semi-idempotent neutrosophic set neutrosophic sets neutrosophic soft expert multiset neutrosophic soft expert sets neutrosophic statistics neutrosophic topology neutrosophic triplets neutrosophicportfolio NQ basis NQ linear algebras NQ vector spaces operating characteristics orthogonal or dual NQ vector subspaces probabilistic neutrosophic hesitant fuzzy set process quasi Clifford AG-groupoid quasi strong inverse AG-groupoid regular CA-groupoid risk risks sample size semi-idempotent semigroup similarity index similarity measure single acceptance sampling plan single-valued bipolar neutrosophic set single-valued neutrosophic linguistic set special neutrosophic triplets strong inverse AG-groupoid supplier selection time-truncated test uncertainty unknown weight information Weibull distribution YinYang bipolar fuzzy set Zhang-Zhang's YinYang bipolar fuzzy set |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557739203321 |
Vladutescu Stefan
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||