top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Autore Kavzoglu Taskin
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (256 p.)
Soggetto topico Research and information: general
Soggetto non controllato aerial images
AI on the edge
artificial neural networks
China
classification
classification ensemble
CNN
CNNs
convolutional neural network
convolutional neural networks
convolutional neural networks (CNNs)
deep learning
dense network
digital terrain analysis
dilated convolutional network
earth observation
end-to-end detection
Faster RCNN
feature fusion
Feicheng
few-shot learning
Gaofen 6
Gaofen-2 imagery
geographic information system (GIS)
hyperspectral image classification
hyperspectral images
image downscaling
image segmentation
land-use
LiDAR
light detection and ranging
machine learning
mask R-CNN
mask regional-convolutional neural networks
microsat
mission
mixed forest
mixed-inter nonlinear programming
model generalization
multi-label segmentation
multi-scale feature fusion
nanosat
on-board
optical remote sensing images
post-processing
quadruplet loss
remote sensing
resource extraction
semantic features
semantic segmentation
Sentinel-2
ship detection
single shot multi-box detector (SSD)
spatial distribution
SRGAN
statistical features
super-resolution
superstructure optimization
Tai'an
transfer learning
unmanned aerial vehicles
winter wheat
You Look Only Once-v3 (YOLO-v3)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557148403321
Kavzoglu Taskin  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Relationship between Forest Ecophysiology and Environment
Relationship between Forest Ecophysiology and Environment
Autore Tognetti Roberto
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (264 p.)
Soggetto topico Biology, life sciences
Forestry industry
Research and information: general
Soggetto non controllato adaptive strategies
allometry
altitude
Aspromonte National Park
autotoxicity
boreal forest
branch lifespan
branch shedding
canopy
canopy tree species
carbon isotopes
carbon sequestration
Cinnamomum migao
climate change
climate niches
climate response
cold stress
crown development
deciduous forest
dendrochronology
dendrometer
discrimination
electron transfer
endangered
Environmental factors
excess absorbed light energy
forest productivity
functional traits
Growth stage
heat dissipation
keeling plot
Larix decidua Mill
leaf angle
leaf functional traits
leaf temperature
leaf thermal damage
leaf thickness
leaf three-dimensional structure
Leaf δ13C
Leaf δ15N
light
light acclimation
light environment
light foraging
light regime
Malus baccata
MbERF11
Mediterranean
mixed forest
MOEd
n/a
nitrogen dioxide
nitrogen metabolism
non-structural carbohydrates
nutrients
ontogenetic phases
ontogeny
phenotypic plasticity
photochemical efficiency
photorespiration
photosynthesis
Pinus cembra L.
Pinus nigra
Pinus pinaster
recruitment period
Relative importance
reproductive system
respiration
salinity
salt stress
seed germination
seedling growth
Sessile oak
shade acclimation
shade tolerance
shoot lifespan
shoot shedding
soil enzyme
soil fungi
soil substrate
Sonneratia × hainanensis
stem circumference changes
stem lifespan
stem shedding
sunfleck
temperature
thermoregulation
transgenic plant
tree architecture
TreeSonic
water availability
wood density
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557552403321
Tognetti Roberto  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing of Above Ground Biomass / Lalit Kumar, Onisimo Mutanga
Remote Sensing of Above Ground Biomass / Lalit Kumar, Onisimo Mutanga
Autore Kumar Lalit
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (264 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato NDLMA
multi-angle remote sensing
TerraSAR-X
above ground biomass
stem volume
regression analysis
ground-based remote sensing
sensor fusion
pasture biomass
grazing management
livestock
mixed forest
SPLSR
estimation accuracy
Bidirectional Reflectance Distribution Factor
forage crops
Land Surface Phenology
climate change
vegetation index
dry biomass
mapping
rangeland productivity
vegetation indices
error analysis
broadleaves
remote sensing
applicability evaluation
ultrasonic sensor
chlorophyll index
alpine meadow grassland
forest biomass
anthropogenic disturbance
fractional vegetation cover
alpine grassland conservation
carbon mitigation
conifer
short grass
grazing exclusion
MODIS time series
random forest
aboveground biomass
NDVI
AquaCrop model
inversion model
wetlands
field spectrometry
spectral index
yield
foliage projective cover
lidar
correlation coefficient
Sahel
biomass
dry matter index
Niger
Landsat
grass biomass
particle swarm optimization
winter wheat
carbon inventory
rice
forest structure information
MODIS
light detection and ranging (LiDAR)
ALOS2
ecological policies
above-ground biomass
Wambiana grazing trial
food security
forest above ground biomass (AGB)
Atriplex nummularia
regional sustainability
CIRed-edge
ISBN 9783039212101
3039212109
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367567003321
Kumar Lalit  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui