Artificial Neural Networks and Evolutionary Computation in Remote Sensing
| Artificial Neural Networks and Evolutionary Computation in Remote Sensing |
| Autore | Kavzoglu Taskin |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (256 p.) |
| Soggetto topico | Research and information: general |
| Soggetto non controllato |
aerial images
AI on the edge artificial neural networks China classification classification ensemble CNN CNNs convolutional neural network convolutional neural networks convolutional neural networks (CNNs) deep learning dense network digital terrain analysis dilated convolutional network earth observation end-to-end detection Faster RCNN feature fusion Feicheng few-shot learning Gaofen 6 Gaofen-2 imagery geographic information system (GIS) hyperspectral image classification hyperspectral images image downscaling image segmentation land-use LiDAR light detection and ranging machine learning mask R-CNN mask regional-convolutional neural networks microsat mission mixed forest mixed-inter nonlinear programming model generalization multi-label segmentation multi-scale feature fusion nanosat on-board optical remote sensing images post-processing quadruplet loss remote sensing resource extraction semantic features semantic segmentation Sentinel-2 ship detection single shot multi-box detector (SSD) spatial distribution SRGAN statistical features super-resolution superstructure optimization Tai'an transfer learning unmanned aerial vehicles winter wheat You Look Only Once-v3 (YOLO-v3) |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557148403321 |
Kavzoglu Taskin
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Relationship between Forest Ecophysiology and Environment
| Relationship between Forest Ecophysiology and Environment |
| Autore | Tognetti Roberto |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (264 p.) |
| Soggetto topico |
Biology, life sciences
Forestry industry Research and information: general |
| Soggetto non controllato |
adaptive strategies
allometry altitude Aspromonte National Park autotoxicity boreal forest branch lifespan branch shedding canopy canopy tree species carbon isotopes carbon sequestration Cinnamomum migao climate change climate niches climate response cold stress crown development deciduous forest dendrochronology dendrometer discrimination electron transfer endangered Environmental factors excess absorbed light energy forest productivity functional traits Growth stage heat dissipation keeling plot Larix decidua Mill leaf angle leaf functional traits leaf temperature leaf thermal damage leaf thickness leaf three-dimensional structure Leaf δ13C Leaf δ15N light light acclimation light environment light foraging light regime Malus baccata MbERF11 Mediterranean mixed forest MOEd n/a nitrogen dioxide nitrogen metabolism non-structural carbohydrates nutrients ontogenetic phases ontogeny phenotypic plasticity photochemical efficiency photorespiration photosynthesis Pinus cembra L. Pinus nigra Pinus pinaster recruitment period Relative importance reproductive system respiration salinity salt stress seed germination seedling growth Sessile oak shade acclimation shade tolerance shoot lifespan shoot shedding soil enzyme soil fungi soil substrate Sonneratia × hainanensis stem circumference changes stem lifespan stem shedding sunfleck temperature thermoregulation transgenic plant tree architecture TreeSonic water availability wood density |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557552403321 |
Tognetti Roberto
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Remote Sensing of Above Ground Biomass / Lalit Kumar, Onisimo Mutanga
| Remote Sensing of Above Ground Biomass / Lalit Kumar, Onisimo Mutanga |
| Autore | Kumar Lalit |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (264 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
NDLMA
multi-angle remote sensing TerraSAR-X above ground biomass stem volume regression analysis ground-based remote sensing sensor fusion pasture biomass grazing management livestock mixed forest SPLSR estimation accuracy Bidirectional Reflectance Distribution Factor forage crops Land Surface Phenology climate change vegetation index dry biomass mapping rangeland productivity vegetation indices error analysis broadleaves remote sensing applicability evaluation ultrasonic sensor chlorophyll index alpine meadow grassland forest biomass anthropogenic disturbance fractional vegetation cover alpine grassland conservation carbon mitigation conifer short grass grazing exclusion MODIS time series random forest aboveground biomass NDVI AquaCrop model inversion model wetlands field spectrometry spectral index yield foliage projective cover lidar correlation coefficient Sahel biomass dry matter index Niger Landsat grass biomass particle swarm optimization winter wheat carbon inventory rice forest structure information MODIS light detection and ranging (LiDAR) ALOS2 ecological policies above-ground biomass Wambiana grazing trial food security forest above ground biomass (AGB) Atriplex nummularia regional sustainability CIRed-edge |
| ISBN |
9783039212101
3039212109 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910367567003321 |
Kumar Lalit
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||