top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Autore Kavzoglu Taskin
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (256 p.)
Soggetto topico Research & information: general
Soggetto non controllato convolutional neural network
image segmentation
multi-scale feature fusion
semantic features
Gaofen 6
aerial images
land-use
Tai’an
convolutional neural networks (CNNs)
feature fusion
ship detection
optical remote sensing images
end-to-end detection
transfer learning
remote sensing
single shot multi-box detector (SSD)
You Look Only Once-v3 (YOLO-v3)
Faster RCNN
statistical features
Gaofen-2 imagery
winter wheat
post-processing
spatial distribution
Feicheng
China
light detection and ranging
LiDAR
deep learning
convolutional neural networks
CNNs
mask regional-convolutional neural networks
mask R-CNN
digital terrain analysis
resource extraction
hyperspectral image classification
few-shot learning
quadruplet loss
dense network
dilated convolutional network
artificial neural networks
classification
superstructure optimization
mixed-inter nonlinear programming
hyperspectral images
super-resolution
SRGAN
model generalization
image downscaling
mixed forest
multi-label segmentation
semantic segmentation
unmanned aerial vehicles
classification ensemble
machine learning
Sentinel-2
geographic information system (GIS)
earth observation
on-board
microsat
mission
nanosat
AI on the edge
CNN
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557148403321
Kavzoglu Taskin  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Relationship between Forest Ecophysiology and Environment
Relationship between Forest Ecophysiology and Environment
Autore Tognetti Roberto
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (264 p.)
Soggetto topico Research & information: general
Biology, life sciences
Forestry & related industries
Soggetto non controllato Leaf δ13C
Leaf δ15N
Growth stage
Environmental factors
Relative importance
nitrogen dioxide
nitrogen metabolism
photorespiration
heat dissipation
excess absorbed light energy
electron transfer
photochemical efficiency
altitude
non-structural carbohydrates
nutrients
ontogeny
Pinus cembra L.
Larix decidua Mill
boreal forest
leaf temperature
photosynthesis
water availability
leaf thermal damage
thermoregulation
endangered
Sonneratia × hainanensis
reproductive system
seed germination
light
temperature
salinity
Cinnamomum migao
autotoxicity
seedling growth
soil substrate
soil enzyme
soil fungi
TreeSonic
MOEd
forest productivity
dendrochronology
recruitment period
Aspromonte National Park
Sessile oak
deciduous forest
carbon sequestration
wood density
allometry
functional traits
climate niches
Malus baccata
MbERF11
cold stress
salt stress
transgenic plant
dendrometer
stem circumference changes
climate response
Mediterranean
Pinus nigra
Pinus pinaster
ontogenetic phases
adaptive strategies
leaf functional traits
light environment
canopy tree species
carbon isotopes
climate change
respiration
discrimination
mixed forest
keeling plot
branch lifespan
shoot lifespan
stem lifespan
branch shedding
shoot shedding
stem shedding
canopy
crown development
tree architecture
light foraging
phenotypic plasticity
shade tolerance
shade acclimation
light acclimation
light regime
sunfleck
leaf thickness
leaf angle
leaf three-dimensional structure
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557552403321
Tognetti Roberto  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing of Above Ground Biomass / Lalit Kumar, Onisimo Mutanga
Remote Sensing of Above Ground Biomass / Lalit Kumar, Onisimo Mutanga
Autore Kumar Lalit
Pubbl/distr/stampa Basel, Switzerland : , : MDPI, , 2019
Descrizione fisica 1 electronic resource (264 p.)
Soggetto non controllato NDLMA
multi-angle remote sensing
TerraSAR-X
above ground biomass
stem volume
regression analysis
ground-based remote sensing
sensor fusion
pasture biomass
grazing management
livestock
mixed forest
SPLSR
estimation accuracy
Bidirectional Reflectance Distribution Factor
forage crops
Land Surface Phenology
climate change
vegetation index
dry biomass
mapping
rangeland productivity
vegetation indices
error analysis
broadleaves
remote sensing
applicability evaluation
ultrasonic sensor
chlorophyll index
alpine meadow grassland
forest biomass
anthropogenic disturbance
fractional vegetation cover
alpine grassland conservation
carbon mitigation
conifer
short grass
grazing exclusion
MODIS time series
random forest
aboveground biomass
NDVI
AquaCrop model
inversion model
wetlands
field spectrometry
spectral index
yield
foliage projective cover
lidar
correlation coefficient
Sahel
biomass
dry matter index
Niger
Landsat
grass biomass
particle swarm optimization
winter wheat
carbon inventory
rice
forest structure information
MODIS
light detection and ranging (LiDAR)
ALOS2
ecological policies
above-ground biomass
Wambiana grazing trial
food security
forest above ground biomass (AGB)
Atriplex nummularia
regional sustainability
CIRed-edge
ISBN 9783039212101
3039212109
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367567003321
Kumar Lalit  
Basel, Switzerland : , : MDPI, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui