top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Frühe Mikroskopie: Beobachtung als Forschungspraxis
Frühe Mikroskopie: Beobachtung als Forschungspraxis
Autore Simon Rebohm
Pubbl/distr/stampa Edition Open Access, 2017
Descrizione fisica 1 online resource (171 p.)
Collana Studies 9: Max Planck Research Library for the History and Development of Knowledge
Soggetto non controllato Edition Open Access
history of science
microscope
microscopic
MPRL
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Altri titoli varianti Frühe Mikroskopie
Frühe Mikroskopie
Record Nr. UNINA-9910372739003321
Simon Rebohm  
Edition Open Access, 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning/Deep Learning in Medical Image Processing
Machine Learning/Deep Learning in Medical Image Processing
Autore Nishio Mizuho
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (132 p.)
Soggetto topico Technology: general issues
Soggetto non controllato airway volume analysis
animal rat models
artificial intelligence
CADx
classification models
colon cancer
colon polyps
computed tomography
convolutional neural network
convolutional neural networks
coronary artery disease
data augmentation
deep learning
handcrafted
machine learning
medical image segmentation
microscopic
n/a
neoplasm metastasis
OCT
optical biopsy
oral carcinoma
ovarian neoplasms
pancreas
prostate carcinoma
radiation exposure
segmentation
SPECT MPI scans
tomography
transfer learning
x-ray computed
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557791503321
Nishio Mizuho  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Texture and Colour in Image Analysis
Texture and Colour in Image Analysis
Autore Bianconi Francesco
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (278 p.)
Soggetto topico Information technology industries
Soggetto non controllato adaptive gradient methods
aging
animal audio
audio classification
bagging post-processing
bounded scheduling method
BQMP and Haralick global-local feature integration
breast cancer
classification
co-saliency
coal petrography
color-texture feature extraction
color-texture features
colored texture pattern classification
cutting pieces
deep learning
deep neural networks
defect recognition
detection
digital intraoral radiography
dissimilarity space
electro-deposition industry
ensemble of classifiers
faster R-CNN
feature extraction
global-local texture classification
hair
hand-designed image descriptors
histopathology
hue variance
image analysis
image classification
image preprocessing
image resizing
image segmentation
item counting device
language modeling
local binary pattern
local Tchebichef moments (LTM)
maceral components
Machine vision
mammogram
mathematics of colour and texture
MB-LBP
meta-heuristics
microscopic
morphological
multi-period pattern
n/a
omnidirectional images
optimization
partial orders
pattern recognition
periapical lesions
period length
prostate cancer
quantitative
random forest
rank features
river scene segmentation
scale-and-stretch
scaling
seam carving
segmentation
siamese network
skew angle
skin microrelief
stochastic gradient descent
surface defect detection
surface reflection
SVM
texture
texture analysis
tissue image
two-level clustering
video saliency
visual saliency estimation
water sorption
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557518003321
Bianconi Francesco  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui