Computational Methods for Polymers |
Autore | Soroush Masoud |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (320 p.) |
Soggetto topico | History of engineering & technology |
Soggetto non controllato |
rapid tooling
additive manufacturing failure modes injection molding modeling olefin gas phase kinetics hyperbranched Monte Carlo simulation radius of gyration span length continuous stirred-tank reactor data-driven parameter estimation retrospective cost model refinement algorithm global sensitivity analysis polyolefin synthesis olefin copolymerization reactivity ratios electronic effects salan catalysts post-metallocene DFT insertion kinetics olefin capture PolyEThyleneAmidoAmine (PETAA) dendrimer molecular topological indices Eccentric connectivity index copolymerization design of experiments reactivity ratio estimation terpolymerization PLP-SEC n-butyl acrylate degree of branching nanostar dendrimer irregularity measure complexity of structure NS1[p] NS2[p] NS3[p] subspace identification polymer processing model predictive control rotational molding batch process modeling and control method of moments free-radical polymerization methyl acrylate thermal polymerization high-temperature polymerization molecular graph irregularity indices dendrimers density functional theory inhibitors phenolic stable nitroxide radicals styrene polymerization RAFT polymerization multi-rate observer nonlinear sampled-data system measurements with delay parameter fitting droplet impact viscoelasticity volume of fluid method process intensification operability modularity process modeling and simulation |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557486203321 |
Soroush Masoud
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Stability Problems for Stochastic Models: Theory and Applications II |
Autore | Zeifman Alexander |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (240 p.) |
Soggetto topico |
Research & information: general
Mathematics & science Probability & statistics |
Soggetto non controllato |
inhomogeneous continuous-time Markov chain
weak ergodicity rate of convergence sharp bounds differential inequalities forward Kolmogorov system prefetching optimization Markov decision processes random trees Galton–Watson capacitance dirichlet boundary value problem monte carlo method unbiased estimator von-neumann-ulam scheme network evolution random graph multi-type branching process continuous-time branching process 2- and 3-interactions Malthusian parameter Poisson process life-length extinction queuing system elastic traffic inpatient claim non-stationary intensity convergence analysis bounds on the rate of convergence wireless network file transfer daily traffic profile blocking probability continuous-time ehrenfest model first-passage time densities proportional intensity functions asymptotic behaviors multi-server queueing model rating self-sufficient servers self-checkout assistants multi-dimensional Markov chains retrial queue negative customers resource heterogeneous queue asymptotic analysis discrete time functional filter optimal unbiased estimation steady state equilibrium arrivals one-server queueing system orbit retrials limit theorem sum of independent random variables random sum asymptotic expansion asymptotic deficiency kurtosis parameter estimation gamma-exponential distribution mixed distributions generalized gamma distribution generalized beta distribution method of moments cumulants asymptotic normality |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Stability Problems for Stochastic Models |
Record Nr. | UNINA-9910566458903321 |
Zeifman Alexander
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|