Organic Rankine Cycle for Energy Recovery System
| Organic Rankine Cycle for Energy Recovery System |
| Autore | De Pascale Andrea |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (192 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
advanced thermodynamic cycles
benzene biomass Brayton carbon footprint of energy production cavitation CFD CHP cogeneration CoolFOAM cyclopentane decentralised energy systems district heating dynamic analysis energy analysis environmental impact exergy exergy analysis expander gear pump heat exchanger internal combustion engine life cycle analysis life cycle assessment low grade heat low sulfur fuels machinery system optimization mesh morphing method comparison micro-ORC natural gas engine OpenFOAM opensource CFD ORC ORC integration technologies organic Rankine cycle organic Rankine cycle system performance parameters positive displacement machine predictive model pressure pulsation regression model scroll ship techno-economic feasibility thermodynamic optimization toluene waste heat recovery WOM zeotropic mixture |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557152703321 |
De Pascale Andrea
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
UAVs for Vegetation Monitoring
| UAVs for Vegetation Monitoring |
| Autore | de Castro Megías Ana |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (452 p.) |
| Soggetto topico | Research & information: general |
| Soggetto non controllato |
Acacia
agro-environmental measures artificial intelligence artificial neural network banana broad-sense heritability canopy cover canopy height century-old biochar chlorophyll content CIELab classification close remote sensing CNN container-grown contextual spatial domain/resolution convolution neural network cotton root rot crop canopy crop disease crop mapping crop monitoring curve fitting data aggregation deep learning detection performance disease detection disease diagnosis disease monitoring drone drought tolerance eddy covariance (EC) evapotranspiration (ET) Faster RCNN flight altitude forage grass forest Fusarium wilt Glycine max GRAPEX growth model high throughput field phenotyping HSV hyperspectral image analysis image segmentation Inception v2 individual plant segmentation Indonesia inference time land cover least squares support vector machine machine learning maize tassel method comparison MobileNet v2 multiple linear regression multiscale textures multispectral multispectral image multispectral imagery multispectral remote sensing NDVI neural network nitrogen stress nutrient deficiency oil palm olive groves operating parameters ornamental patch-based CNN phenotyping gap plant detection plant nitrogen estimation plant segmentation plant trails plant-by-plant plant-level precision agriculture purple rapeseed leaves random forest red-edge spectra remote sensing remote sensing technique RGB RGB camera RGB imagery semantic segmentation single-plant solar zenith angle southern Spain spatial resolution SSD sUAS support vector machine tassel branch number texture thermal thermal camera time of day transfer learning transpiration tropics Two Source Energy Balance model (TSEB) U-Net UAS UAV UAV digital images UAV hyperspectral UAV remote sensing unmanned aerial vehicle variable importance vegetation cover vegetation ground cover vegetation index vegetation indices VGG16 visual recognition water stress weed detection wheat yellow rust winter wheat biomass |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557661103321 |
de Castro Megías Ana
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||