top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applying the Free-Energy Principle to Complex Adaptive Systems
Applying the Free-Energy Principle to Complex Adaptive Systems
Autore Badcock Paul
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (214 p.)
Soggetto topico Computer science
Information technology industries
Soggetto non controllato active inference
adaptive robots
affect control theory
agency
agent-based model
allostatic (hub) overload
apoptosis
Bayesian
Bayesian brain
Bayesian inference
cancer niches
cascading failure
cluster variation method
cognitive-affective development
cognitivism
collective intelligence
complex adaptive systems
computational model
consciousness
critical slowing down
cybernetics
disease
disorder
embodiment
emotion
emotions
enactivism
feelings
filtering
free energy
free energy principle
Free Energy Principle
free will
generative model
generative models
hierarchical control systems
intelligence
intentionality
Kikuchi approximations
master equations
mental causation
message passing
metabolism
metastasis
model-based control
multiscale systems
n/a
neurotechnology
non-equilibrium
permutation entropy
POMDP
readiness potentials
representations
sociology
stochastic
stress
uncertainty
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910674391803321
Badcock Paul  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Approximate Bayesian Inference
Approximate Bayesian Inference
Autore Alquier Pierre
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (508 p.)
Soggetto topico Mathematics and Science
Research and information: general
Soggetto non controllato approximate Bayesian computation
Approximate Bayesian Computation
approximate Bayesian computation (ABC)
Bayesian inference
Bayesian sampling
Bayesian statistics
Bethe free energy
bifurcation
complex systems
control variates
data imputation
data streams
deep learning
differential evolution
differential privacy (DP)
discrete state space
dynamical systems
Edward-Sokal coupling
entropy
ergodicity
expectation-propagation
factor graphs
fixed-form variational Bayes
Gaussian
generalisation bounds
Gibbs posterior
gradient descent
greedy algorithm
Hamilton Monte Carlo
hyperparameters
integrated nested laplace approximation
Kullback-Leibler divergence
Langevin dynamics
Langevin Monte Carlo
Laplace approximations
machine learning
Markov chain
Markov chain Monte Carlo
Markov Chain Monte Carlo
Markov kernels
MCMC
MCMC-SAEM
mean-field
message passing
meta-learning
Monte Carlo integration
network modeling
network variability
neural networks
no free lunch theorems
non-reversible dynamics
online learning
online optimization
PAC-Bayes
PAC-Bayes theory
particle flow
principal curves
priors
probably approximately correct
regret bounds
Riemann Manifold Hamiltonian Monte Carlo
robustness
sequential learning
sequential Monte Carlo
Sequential Monte Carlo
sleeping experts
sparse vector technique (SVT)
statistical learning theory
statistical mechanics
Stiefel manifold
stochastic gradients
stochastic volatility
thinning
variable flow
variational approximations
variational Bayes
variational free energy
variational inference
variational message passing
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576874903321
Alquier Pierre  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui