Applications of Artificial Intelligence in Medicine Practice |
Autore | Kang Kyungtae |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (184 p.) |
Soggetto topico |
Technology: general issues
History of engineering & technology |
Soggetto non controllato |
computational intelligence
medical assistance instance-based learning healthcare clinical decision support systems deep neural networks medical imaging backdoor attacks security and privacy COVID-19 gastric cancer endoscopy deep learning convolutional neural network brain pituitary adenoma dysembryoplastic neuroepithelial tumor DNET ganglioglioma digital pathology computer vision machine learning CNN ATLAS HarDNet Swin transformer segmentation U-Net cerebral infarction CycleGAN advanced statistics schizophrenia aggression forensic psychiatry medical image segmentation CT image segmentation kernel density semi-automated labeling tool Bayesian learning neuroimaging feature selection kernel formulation mental disorders MRI visual acuity fundus images ophthalmology SVM |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910673905003321 |
Kang Kyungtae | ||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Methods for Medical and Cyber Security |
Autore | Luo Suhuai |
Pubbl/distr/stampa | Basel, : MDPI Books, 2022 |
Descrizione fisica | 1 electronic resource (228 p.) |
Soggetto non controllato |
fintech
financial technology blockchain deep learning regtech environment social sciences machine learning learning analytics student field forecasting imbalanced datasets explainable machine learning intelligent tutoring system adversarial machine learning transfer learning cognitive bias stock market behavioural finance investor’s profile Teheran Stock Exchange unsupervised learning clustering big data frameworks fault tolerance stream processing systems distributed frameworks Spark Hadoop Storm Samza Flink comparative analysis a survey data science educational data mining supervised learning secondary education academic performance text-to-SQL natural language processing database machine translation medical image segmentation convolutional neural networks SE block U-net DeepLabV3plus cyber-security medical services cyber-attacks data communication distributed ledger identity management RAFT HL7 electronic health record Hyperledger Composer cybersecurity password security browser security social media ANOVA SPSS internet of things cloud computing computational models metaheuristics phishing detection website phishing |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910595066903321 |
Luo Suhuai | ||
Basel, : MDPI Books, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Deep Learning in Medical Image Analysis |
Autore | Zhang Yudong |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (458 p.) |
Soggetto non controllato |
interpretable/explainable machine learning
image classification image processing machine learning models white box black box cancer prediction deep learning multimodal learning convolutional neural networks autism fMRI texture analysis melanoma glcm matrix machine learning classifiers explainability explainable AI XAI medical imaging diagnosis ARMD change detection unsupervised learning microwave breast imaging image reconstruction tumor detection digital pathology whole slide image processing multiple instance learning deep learning classification HER2 medical images transfer learning optimizers neo-adjuvant treatment tumour cellularity cancer breast cancer diagnostics imaging computation artificial intelligence 3D segmentation active surface discriminant analysis PET imaging medical image analysis brain tumor cervical cancer colon cancer lung cancer computer vision musculoskeletal images lung disease detection taxonomy convolutional neural network CycleGAN data augmentation dermoscopic images domain transfer macroscopic images skin lesion segmentation infection detection COVID-19 X-ray images bayesian inference shifted-scaled dirichlet distribution MCMC gibbs sampling object detection surgical tools open surgery egocentric camera computers in medicine segmentation MRI ECG signal detection portable monitoring devices 1D-convolutional neural network medical image segmentation domain adaptation meta-learning U-Net computed tomography (CT) magnetic resonance imaging (MRI) low-dose sparse-angle quantitative comparison |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557435103321 |
Zhang Yudong | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine Learning/Deep Learning in Medical Image Processing |
Autore | Nishio Mizuho |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (132 p.) |
Soggetto topico | Technology: general issues |
Soggetto non controllato |
pancreas
segmentation computed tomography deep learning data augmentation neoplasm metastasis ovarian neoplasms radiation exposure tomography x-ray computed prostate carcinoma microscopic convolutional neural network machine learning handcrafted oral carcinoma medical image segmentation colon cancer colon polyps OCT optical biopsy animal rat models CADx airway volume analysis artificial intelligence coronary artery disease SPECT MPI scans convolutional neural networks transfer learning classification models |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557791503321 |
Nishio Mizuho | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|