top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Entropy in Image Analysis II
Entropy in Image Analysis II
Autore Sparavigna Amelia Carolina
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (394 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato AMBTC
art history
art statistics
atmosphere background
backscattered signals
balance
bit cube
blind image quality assessment
brain-computer interface (BCI)
chaotic system
chaotic systems
chiaroscuro
children
chosen plaintext attack
complexity
compound chaotic system
computer vision
continuous wavelet transform (CWT)
convolution neural network
convolutional neural network
convolutional neural network (CNN)
crowd behavior analysis
crowd motion detection
cryptography
data expansion
data hiding
declining quality
deep neural network
detectability
dictionary-based coding
diffusion
direction entropy
DNA coding
DNA computing
Duchenne muscular dystrophy
electroencephalography (EEG)
engine flame
entropy
feature distribution entropy
feature fusion
filtering
Golomb-Rice codes
human visual system
hyperchaotic system
image binarization
image chaotic encryption
image encryption
image entropy
image information entropy
image preprocessing
image processing
image quality evaluation
image retrieval
image segmentation
infrared radiation
IoU
Keras
key space calculation
key-point detection
Latin cube
local entropy filter
lossless compression
machine learning
magnetic resonance images
malaria infection
medical color images
medical image
medical imaging
Mordell elliptic curve
motor imagery (MI)
MXNet
neural engineering
neuroaesthetics
node strength
non-maximum suppression
normalized entropy
nuclear spin generator
object detection
optical character recognition
pattern classification
peak signal-to-noise ratio
pixel value adjusting
Pompe disease
pooling method
portrait paintings
pseudo-random numbers
Python
quantitative muscle ultrasound
quasi-resonant Rossby/drift wave triads
renaissance
repulsive force
RGB
RSNNS
S-box
saliency and distortion
salient crowd motion detection
security
security analysis
steganography
stego image
substitution box
symmetry
texture-feature parametric imaging
thresholding
ultrasound
weld evaluation
weld segmentation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557433403321
Sparavigna Amelia Carolina  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Principles and Applications of Data Science
Principles and Applications of Data Science
Autore Liu Chuan-Ming
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (168 p.)
Soggetto topico History of engineering and technology
Technology: general issues
Soggetto non controllato air pollution
behaviour network
behaviour sequence pattern
classification
combined classification model
convolutional neural network
corpus data
crop production prediction
data mining
deep learning
deep transfer learning
dictionary
digitization
electronic health records
fair exchange
feature fusion
fine-tuning
focal-segmental
forward secrecy
graph neural network
image classification
Internet of Things
kidney disease
kidney glomeruli
lexical data
linguistic linked open data
medical image
mining
mobile application
neuro-fuzzy
peasant farming
PM10
PM2.5
prediction model
predictive analytics
raw material
sclerosed glomeruli
self-attention mechanism
similar user recommendation
smart farming system
supervised
terminology
terminology application
user preference learning
water crystal
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910580211103321
Liu Chuan-Ming  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui