top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems
Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems
Autore Li Chaoshun
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (212 p.)
Soggetto topico Physics
Research and information: general
Soggetto non controllato 'S' characteristics
1D-3D coupling model
active power
anomaly detection
approximate entropy
cascaded reservoirs
change point detection
chaotic particle swarms method
comprehensive deterioration index
cosine similarity
degradation trend prediction
doubly-fed variable speed pumped storage power station
doubly-fed variable-speed pumped storage
ensemble empirical mode decomposition
facility agriculture
fractional order PID controller (FOPID)
gated recurrent unit
high proportional renewable power system
Hopf bifurcation
hybrid system
hydraulic oil viscosity
hydraulic PTO
hydro power
hydropower units
light gradient boosting machine
long and short-term neural network
low water head conditions
maximal information coefficient
maximum information coefficient
multi-objective optimization
noise reduction
nonlinear modeling
nonlinear pump turbine characteristics
operation strategy
parameter sensitivity
power yield
pressure pulsation
pumped storage unit
pumped storage units
pumped storage units (PSUs)
reliability
seasonal price
sensitivity analysis
sparrow search algorithm
stability analysis
stochastic dynamic programming (SDP)
successive start-up
thermal-hydraulic characteristics
transition stability
variational mode decomposition
wave energy converter
ISBN 3-0365-5838-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637780603321
Li Chaoshun  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Advances and Applications of Machine Learning in Metal Forming Processes
Recent Advances and Applications of Machine Learning in Metal Forming Processes
Autore Prates Pedro
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (210 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Mining technology & engineering
Soggetto non controllato sheet metal forming
uncertainty analysis
metamodeling
machine learning
hot rolling strip
edge defects
intelligent recognition
convolutional neural networks
deep-drawing
kriging metamodeling
multi-objective optimization
FE (Finite Element) AutoForm robust analysis
defect prediction
mechanical properties prediction
high-dimensional data
feature selection
maximum information coefficient
complex network clustering
ring rolling
process energy estimation
metal forming
thermo-mechanical FEM analysis
artificial neural network
aluminum alloy
mechanical property
UTS
topological optimization
artificial neural networks (ANN)
machine learning (ML)
press-brake bending
air-bending
three-point bending test
sheet metal
buckling instability
oil canning
artificial intelligence
convolution neural network
hot rolled strip steel
defect classification
generative adversarial network
attention mechanism
deep learning
mechanical constitutive model
finite element analysis
plasticity
parameter identification
full-field measurements
ISBN 3-0365-5772-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637782503321
Prates Pedro  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui