top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS)
Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS)
Autore Tang Bo
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (344 p.)
Soggetto non controllato FPGA
recurrence plot (RP)
residual learning
neural networks
driver monitoring
navigation
depthwise separable convolution
optimization
dynamic path-planning algorithms
object tracking
sub-region
cooperative systems
convolutional neural networks
DSRC
VANET
joystick
road scene
convolutional neural network (CNN)
multi-sensor
p-norm
occlusion
crash injury severity prediction
deep leaning
squeeze-and-excitation
electric vehicles
perception in challenging conditions
T-S fuzzy neural network
total vehicle mass of the front vehicle
electrocardiogram (ECG)
communications
generative adversarial nets
camera
adaptive classifier updating
Vehicle-to-X communications
convolutional neural network
predictive
Geobroadcast
infinity norm
urban object detector
machine learning
automated-manual transition
red light-running behaviors
photoplethysmogram (PPG)
panoramic image dataset
parallel architectures
visual tracking
autopilot
ADAS
kinematic control
GPU
road lane detection
obstacle detection and classification
Gabor convolution kernel
autonomous vehicle
Intelligent Transport Systems
driving decision-making model
Gaussian kernel
autonomous vehicles
enhanced learning
ethical and legal factors
kernel based MIL algorithm
image inpainting
fusion
terrestrial vehicle
driverless
drowsiness detection
map generation
object detection
interface
machine vision
driving assistance
blind spot detection
deep learning
relative speed
autonomous driving assistance system
discriminative correlation filter bank
recurrent neural network
emergency decisions
LiDAR
real-time object detection
vehicle dynamics
path planning
actuation systems
maneuver algorithm
autonomous driving
smart band
the emergency situations
two-wheeled
support vector machine model
global region
biological vision
automated driving
ISBN 3-03921-376-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Machine Learning and Embedded Computing in Advanced Driver Assistance Systems
Record Nr. UNINA-9910367757403321
Tang Bo  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Wireless Acoustic Sensor Network Design for Noise Monitoring in Smart Cities
Smart Wireless Acoustic Sensor Network Design for Noise Monitoring in Smart Cities
Autore Alsina-Pagès Rosa Ma
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (240 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato motor
mechanical fault
detection
RMS
sound
drill
safety
pattern
bearing
fan
shaft
road traffic noise
noise events
intermittency ratio
urban sites classification
noise monitoring
real-time noise mapping
wireless sensor networks
noise mapping
noise mitigation
DYNAMAP project
outdoors noise
sound level meter
digital signal processing
multirate filters
dynamic noise maps
anomalous noise events
individual impact
aggregate impact
WASN
sensor nodes
urban and suburban environments
noise control
sensor concept
road traffic noise model
dynamic model
acoustics
smart cities
deep learning
long short-term memory
temporal forecast
p-u sensor
p-p sensor
noise
Adrienne
stabilization
damping
acoustic impedance
road surfaces
low-cost sensors
networks
noise sources
regression analysis
contribution analysis
vehicle interior noise
acoustic sensor design
acoustic event detection
map generation
public information
END
CNOSSOS-EU
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557779403321
Alsina-Pagès Rosa Ma  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui