top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Non-archimedean tame topology and stably dominated types / / Ehud Hrushovski, François Loeser
Non-archimedean tame topology and stably dominated types / / Ehud Hrushovski, François Loeser
Autore Hrushovski Ehud
Pubbl/distr/stampa Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2016
Descrizione fisica 1 online resource (227 p.)
Disciplina 512.4
Collana Annals of Mathematics Studies
Soggetto topico Tame algebras
Soggetto non controllato Abhyankar property
Berkovich space
Galois orbit
Riemann-Roch
Zariski dense open set
Zariski open subset
Zariski topology
algebraic geometry
algebraic variety
algebraically closed valued field
analytic geometry
birational invariant
canonical extension
connectedness
continuity criteria
continuous definable map
continuous map
curve fibration
definable compactness
definable function
definable homotopy type
definable set
definable space
definable subset
definable topological space
definable topology
definable type
definably compact set
deformation retraction
finite simplicial complex
finite-dimensional vector space
forward-branching point
fundamental space
g-continuity
g-continuous
g-open set
germ
good metric
homotopy equivalence
homotopy
imaginary base set
ind-definable set
ind-definable subset
inflation homotopy
inflation
inverse limit
iso-definability
iso-definable set
iso-definable subset
iterated place
linear topology
main theorem
model theory
morphism
natural functor
non-archimedean geometry
non-archimedean tame topology
o-minimal formulation
o-minimality
orthogonality
path
pro-definable bijection
pro-definable map
pro-definable set
pro-definable subset
pseudo-Galois covering
real numbers
relatively compact set
residue field extension
retraction
schematic distance
semi-lattice
sequence
smooth case
smoothness
stability theory
stable completion
stable domination
stably dominated point
stably dominated type
stably dominated
strong stability
substructure
topological embedding
topological space
topological structure
topology
transcendence degree
v-continuity
valued field
Γ-internal set
Γ-internal space
Γ-internal subset
ISBN 1-4008-8122-6
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- 1. Introduction -- 2. Preliminaries -- 3. The space v̂ of stably dominated types -- 4. Definable compactness -- 5. A closer look at the stable completion -- 6. Γ-internal spaces -- 7. Curves -- 8. Strongly stably dominated points -- 9. Specializations and ACV2F -- 10. Continuity of homotopies -- 11. The main theorem -- 12. The smooth case -- 13. An equivalence of categories -- 14. Applications to the topology of Berkovich spaces -- Bibliography -- Index -- List of notations
Record Nr. UNINA-9910797708403321
Hrushovski Ehud  
Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Non-archimedean tame topology and stably dominated types / / Ehud Hrushovski, François Loeser
Non-archimedean tame topology and stably dominated types / / Ehud Hrushovski, François Loeser
Autore Hrushovski Ehud
Pubbl/distr/stampa Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2016
Descrizione fisica 1 online resource (227 p.)
Disciplina 512.4
Collana Annals of Mathematics Studies
Soggetto topico Tame algebras
Soggetto non controllato Abhyankar property
Berkovich space
Galois orbit
Riemann-Roch
Zariski dense open set
Zariski open subset
Zariski topology
algebraic geometry
algebraic variety
algebraically closed valued field
analytic geometry
birational invariant
canonical extension
connectedness
continuity criteria
continuous definable map
continuous map
curve fibration
definable compactness
definable function
definable homotopy type
definable set
definable space
definable subset
definable topological space
definable topology
definable type
definably compact set
deformation retraction
finite simplicial complex
finite-dimensional vector space
forward-branching point
fundamental space
g-continuity
g-continuous
g-open set
germ
good metric
homotopy equivalence
homotopy
imaginary base set
ind-definable set
ind-definable subset
inflation homotopy
inflation
inverse limit
iso-definability
iso-definable set
iso-definable subset
iterated place
linear topology
main theorem
model theory
morphism
natural functor
non-archimedean geometry
non-archimedean tame topology
o-minimal formulation
o-minimality
orthogonality
path
pro-definable bijection
pro-definable map
pro-definable set
pro-definable subset
pseudo-Galois covering
real numbers
relatively compact set
residue field extension
retraction
schematic distance
semi-lattice
sequence
smooth case
smoothness
stability theory
stable completion
stable domination
stably dominated point
stably dominated type
stably dominated
strong stability
substructure
topological embedding
topological space
topological structure
topology
transcendence degree
v-continuity
valued field
Γ-internal set
Γ-internal space
Γ-internal subset
ISBN 1-4008-8122-6
Classificazione SI 830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- Contents -- 1. Introduction -- 2. Preliminaries -- 3. The space v̂ of stably dominated types -- 4. Definable compactness -- 5. A closer look at the stable completion -- 6. Γ-internal spaces -- 7. Curves -- 8. Strongly stably dominated points -- 9. Specializations and ACV2F -- 10. Continuity of homotopies -- 11. The main theorem -- 12. The smooth case -- 13. An equivalence of categories -- 14. Applications to the topology of Berkovich spaces -- Bibliography -- Index -- List of notations
Record Nr. UNINA-9910822032303321
Hrushovski Ehud  
Princeton, New Jersey ; ; Oxford, [England] : , : Princeton University Press, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui