Advanced Technology Related to Radar Signal, Imaging, and Radar Cross-Section Measurement
| Advanced Technology Related to Radar Signal, Imaging, and Radar Cross-Section Measurement |
| Autore | Kobayashi Hirokazu |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (570 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
2-D PPS
3-D deformation adaptive reduced method aircraft surveillance altitude measurement accuracy analytical approach antenna array atomic norm automatic guided vehicle Bayesian inversion bistatic inverse synthetic aperture radar bistatic MIMO radar block coherence measure block sparse Bayesian learning CLEAN technique clustering methods clutter reduction clutter suppression coherent integration coherent pulse trains comprehensive SAR conductivity constant modulus sequences constitutive parameters contrast target detection correlation properties Cramer-Rao lower bound critical height crosshole ground penetrating radar (GPR) curved orbit deception jamming dechirping denoising detection deramping-based approach differential SAR tomography dilation morphology direct position determination discrete cosine transform (DCT) discrete scatterer model DOA estimation DoA/DoD estimation DOD/DOA estimation Doppler Doppler rate doppler tolerance double negative dual-band dual-polarized radar electromagnetic wave attribute energy spectrum method entropy thresholding FMCW radio altimeter forward model fractional Fourier transform (FRFT) frequency shifting modulation generative adversarial nets generator and discriminator GPR guided filter height pulses high reliability high switching speed hyperbolic tangent function image fusion image processing integral cubic phase function (ICPF) interrupted sampling interrupted transmitting and receiving (ITR) inverse synthetic aperture ladar (ISAL) inverse synthetic aperture radar (ISAR) ISAR K-L transform least square error linear geometry distortion local correlation local gradient method low control voltage low-rank approximation lunar penetrating radar man-made targets maneuvering target maneuvering target detection marine radar maritime traffic monitoring Markov chain Monte Carlo (MCMC) maximum likelihood estimator metamaterial absorber methodological error micro-Doppler micro-motion feature extraction microwave imaging MIMO radar modeling error motion parameter estimation multiparametric SAR observation multipath ghost suppression mutual coupling n/a narrowband interference separation non-uniform fast Fourier transform (NUFFT) non-uniform grid off-grid sparse problem orthogonal matching pursuit parameter estimation passive bistatic radar PBR (passive bistatic radar) permittivity phased array radar polarimetric decomposition prior information pulse radar radar echo cancellation radar jamming radon transform relative water content remote sensing RF MEMS rotating target S-transformation saliency detection saliency preprocessing LLC SAR scene classification seasonal permafrost second-order phase difference (SoPD) seislet transform sensing matrix optimization series reversion simultaneous polarimetric radar single moving sensor singular value decomposition (SVD) small wind streak SNR spaceborne sparse recovery sparse representation speckle noise filtering squinted SAR subspace extraction switch synchrosqueezing synthetic aperture radar synthetic aperture radar (SAR) Synthetic Aperture Radar (SAR) through-wall imaging through-wall radar imaging time-frequency analysis tomography ultra-wide frequency deviation ultrahigh resolution unmanned aerial vehicle wake detection and analysis wideband noise interference wind direction retrieval |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557305803321 |
Kobayashi Hirokazu
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics / Felix Fritzen, David Ryckelynck
| Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics / Felix Fritzen, David Ryckelynck |
| Autore | Fritzen Felix |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (254 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
supervised machine learning
proper orthogonal decomposition (POD) PGD compression stabilization nonlinear reduced order model gappy POD symplectic model order reduction neural network snapshot proper orthogonal decomposition 3D reconstruction microstructure property linkage nonlinear material behaviour proper orthogonal decomposition reduced basis ECSW geometric nonlinearity POD model order reduction elasto-viscoplasticity sampling surrogate modeling model reduction enhanced POD archive modal analysis low-rank approximation computational homogenization artificial neural networks unsupervised machine learning large strain reduced-order model proper generalised decomposition (PGD) a priori enrichment elastoviscoplastic behavior error indicator computational homogenisation empirical cubature method nonlinear structural mechanics reduced integration domain model order reduction (MOR) structure preservation of symplecticity heterogeneous data reduced order modeling (ROM) parameter-dependent model data science Hencky strain dynamic extrapolation tensor-train decomposition hyper-reduction empirical cubature randomised SVD machine learning inverse problem plasticity proper symplectic decomposition (PSD) finite deformation Hamiltonian system DEIM GNAT |
| ISBN |
9783039214105
3039214101 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910367759403321 |
Fritzen Felix
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||