top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning-Based Machinery Fault Diagnostics
Deep Learning-Based Machinery Fault Diagnostics
Autore Chen Hongtian
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (290 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato abnormal case removal
alumina concentration
aluminum reduction process
anti-noise
attention mechanism
autonomous underwater vehicle
auxiliary model
Bayesian network
bearing fault detection
belief rule base
canonical correlation analysis
canonical variate analysis
case-based reasoning
convolution fusion
convolutional neural network
data augmentation
data-driven
deep residual network
distributed predictive control
disturbance detection
dynamic autoregressive latent variables model
dynamics
event-triggered control
evidential reasoning
evidential reasoning rule
fault detection
fault diagnosis
fault tolerant control
filter
flywheel fault diagnosis
fractional-order calculus theory
fuzzy fault tree analysis
gated recurrent unit
gearbox fault diagnosis
hammerstein output-error systems
high-speed trains
information transformation
intelligent fault diagnosis
interval type-2 Takagi-Sugeno fuzzy model
just-in-time learning
k-nearest neighbor analysis
local outlier factor
LSSVM
multi-innovation identification theory
n/a
nonlinear networked systems
ocean currents
operational optimization
parameter optimization
power transmission system
process monitoring
PSO
robust optimization
sintering process
spatiotemporal feature fusion
stacked pruning sparse denoising autoencoder
state identification
statistical local analysis
subspace identification
system modelling
thruster fault diagnostics
variable time lag
wavelet mutation
ISBN 3-0365-5174-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469103321
Chen Hongtian  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Smart Sensors and Devices in Artificial Intelligence
Smart Sensors and Devices in Artificial Intelligence
Autore Zhang Dan
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (336 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adaptive hedge algorithm
adaptive landing
adverse weather
air pollution
air quality monitoring
AIS
ankle-foot exoskeleton
artificial intelligence
artificial neural network
atmospheric data
audification
autonomous vehicle
banana ripening
cable tension measurement
clamping force estimation
CNN
CO2 welding
color histogram
correlation filter
data augmentation
data fusion
data processing
data streams
deep learning
DenseNet
distributed
energy-efficient
ethylene gas
evacuation path
FBG
fruit condition monitoring
fuzzy functional dependencies
HF-OTH radar
inertial measurement unit
IoT
joint torque disturbance observer
landing gear
link establishment behaviors
local outlier factor
long short term memory recurrent neural networks
LSTM
machine learning
maritime surveillance
mechanical sensor
microelectromechanical systems
molten pool
multi-story multi-exit building
multi-time-slots planning
n/a
online monitoring
optimization
outlier detection
PSO-BPNN
queue length
radar tracking
reliable
RNN
roadside LiDAR
roadside sensor
scenario generation
self-adaptiveness
sensor
Sensors
short-wave radio station
signal recognition
smart cities
smart sensor and device
smart sensors
speech to text
surgical robot end-effector
task assignment
temperature sensors
text to speech
traffic flow
traffic forecasting
unidimensional ACGAN
vehicle classification
vehicle detection
visual tracking
visualization
walking assistance
wireless sensor network
wireless sensor networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557128403321
Zhang Dan  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui