top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Process Monitoring for Industry 4.0
Advanced Process Monitoring for Industry 4.0
Autore Reis Marco S
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (288 p.)
Soggetto topico Technology: general issues
Soggetto non controllato artificial generation of variability
auto machine learning
classification
combustion
condition monitoring
construction industry
continuous casting
control chart pattern
convolutional neural network
curve resolution
data augmentation
data mining
data reconciliation
decision support systems
digital processing
discriminant analysis
disruption management
disruptions
expert systems
failure mode and effects analysis (FMEA)
failure mode effects analysis
fault detection
fault diagnosis
high-dimensional data
imbalanced data
Industry 4.0
latent variables models
load identification
membrane
monitoring
multi-mode model
multi-phase residual recursive model
multiscale
multivariate data analysis
n/a
neural networks
non-intrusive load monitoring
online
optical sensors
OPTICS
pasting process
PCA
plaster production
PLS
principal component analysis
process control
process image
process monitoring
quality control
quality prediction
real-time
risk priority number
rolling bearing
semiconductor manufacturing
signal detection
Six Sigma
spatial-temporal data
spectroscopy measurements
statistical process control
statistical process monitoring
time series classification
yield improvement
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557491503321
Reis Marco S  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes
Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes
Autore Gao Zhiwei
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (514 p.)
Soggetto topico Technology: general issues
Soggetto non controllato acetonitrile
additive white Gaussian noises (AWGN)
association matrix
behavior transfer
belief statistic
cascading failures
CFSFDP algorithm
close distance coal seams
coarse model
complex network theory
condition monitoring
constitutive model
control chart
control problem
cumulative distribution function
data-driven methods
dead time
deep deterministic policy gradient
deep reinforcement learning
deviation control
distributed generation (DG)
distributed model predictive control
drilling machine
energy conversion systems
event-based
EWT
failure criterion
fast Fourier transform (FFT)
Fast-Newman algorithm
fault classification
fault diagnosis
fault prognosis
flexible flow shop
flexible flow shop scheduling
flotation process
full-heat integration
fuzzy logic
gamma distribution
goaf
gob-side entry retaining by roof cutting
graph theory
hardware experiment
Holmquist-Johnson-Cook constitutive model of briquette
Hopfield neural network
Hybrid Attack Graph
improved compact genetic algorithm
in-situ monitoring
incomplete data
INSGA-II
Level-of-Resilience
limited buffer
link-addition strategy
load identification
local scheduling
loop design
memetic salp swarm algorithm
microalgae
MIMO temperature control in heating process system
multi-input and multi-output system
multi-input multi-output (MIMO) temperature system
multi-linear principal component analysis (MPCA)
multi-objective optimization
multi-queue limited buffers
multiscale fuzzy entropy
n/a
neutrosophic statistic
non-pillar
nonlinear adaptive backstepping controller disturbance observer
numerical simulation
oil and gas
optimal nonlinear adaptive control
parameter acquisition
parameter uncertainties
perturbation observer
PID
PNN
pole-zero cancelation
potential crowding distance
power systems
pressure swing distillation
probability density function of the Gaussian distribution
process control
public buffer
raceway
reactive power optimization
reagent dosage
refrigeration
reinforcement learning
resilient control
roadway supporting
self-learning
semiconductor bonding equipment-grouping method
separation
simulated annealing algorithm
slow-mode-based control
split Hopkinson pressure bar experiment
stability
state-action chains
static and dynamic planning
steam power plant
steam/water loop
stress distribution
temperature difference
temperature differences
time series froth image
topology
transfer bees optimizer
transient response
tunnel boring machine
uncorrelated multi-linear principal component analysis (UMPCA)
variable geometry turbocharger
voltage source converter
water
wind turbine
wind turbine systems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557338303321
Gao Zhiwei  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui