top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence for Multimedia Signal Processing
Artificial Intelligence for Multimedia Signal Processing
Autore Kim Byung-Gyu
Pubbl/distr/stampa Basel, : MDPI Books, 2022
Descrizione fisica 1 electronic resource (212 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato human-height estimation
depth video
depth 3D conversion
artificial intelligence
convolutional neural networks
deep neural network
convolutional neural network
environmental sound recognition
feature combination
multimodal joint representation
content curation social networks
different recommend tasks
content based recommend systems
scene/place classification
semantic segmentation
deep learning
weighting matrix
speech enhancement
generative adversarial network
relativistic GAN
lightweight neural network
single image super-resolution
image enhancement
image restoration
residual dense networks
visual sentiment analysis
sentiment classification
graph convolutional networks
generative adversarial networks
traffic surveillance image processing
image de-raining
fluency evaluation
speech recognition
data augmentation
variational autoencoder
speech conversion
heartbeat classification
convolutional neural network (CNN)
canonical correlation analysis (CCA)
Indian Sign Language (ISL)
natural language processing
avatar
sign movement
context-free grammar
object detection
logical story unit detection (LSU)
object re-ID
computer vision
image processing
single image artifacts reduction
dense networks
residual networks
channel attention networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910595077003321
Kim Byung-Gyu  
Basel, : MDPI Books, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Augmented Reality, Virtual Reality & Semantic 3D Reconstruction
Augmented Reality, Virtual Reality & Semantic 3D Reconstruction
Autore Lv Zhihan
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (304 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato feature tracking
superpixel
structure from motion
three-dimensional reconstruction
local feature
multi-view stereo
construction hazard
safety education
photoreality
virtual reality
anatomization
audio classification
olfactory display
deep learning
transfer learning
inception model
augmented reality
higher education
scientific production
web of science
bibliometric analysis
scientific mapping
applications in subject areas
interactive learning environments
3P model
primary education
educational technology
mobile lip reading system
lightweight neural network
face correction
virtual reality (VR)
computer vision
projection mapping
3D face model
super-resolution
radial curve
Dynamic Time Warping
semantic 3D reconstruction
eye-in-hand vision system
robotic manipulator
probabilistic fusion
graph-based refinement
3D modelling
3D representation
game engine
laser scanning
panoramic photography
super-resolution reconstruction
generative adversarial networks
dense convolutional networks
texture loss
WGAN-GP
orientation
positioning
viewpoint
image matching
algorithm
transformation
ADHD
EDAH
assessment
continuous performance test
Photometric Stereo (PS)
3D reconstruction
fully convolutional network (FCN)
semi-immersive virtual reality
children
cooperative games
empowerment
perception
motor planning
problem-solving
area of interest
wayfinding
spatial information
one-shot learning
gesture recognition
GREN
skeleton-based
3D composition
pre-visualization
stereo vision
360° video
ISBN 3-0365-6062-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639985103321
Lv Zhihan  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui