top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Assessment of Renewable Energy Resources with Remote Sensing
Assessment of Renewable Energy Resources with Remote Sensing
Autore Martins Fernando Ramos
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (244 p.)
Soggetto topico Research & information: general
Soggetto non controllato artificial neural networks
Baltic area
climate
cloud
cloud coverage
cloud detection
coastal wind measurements
coastline
computational design method
convection
CSP plants
data processing
digitized image processing
electrical resistivity tomography
extreme value analysis
feature engineering
feature importance
forecasting
geophysical prospecting
geothermal energy
GES-CAL software
global radiation
graphical user interface software
Hazaki Oceanographical Research Station
hydropower reservoir
image processing
lake breeze influence
light gradient boosting machine
machine learning
machine learning techniques
metaheuristic
multistep-ahead prediction
parameter extraction
passive design strategy
photovoltaic power plant
plan position indicator
point cloud data
potential well field location
remote sensing
remote sensing data acquisition
renewable energy resource assessment and forecasting
satellite
scanning LiDAR
scatterometer
shading envelopes
sky camera
smart island
solar energy
solar energy resource
solar irradiance enhancement
solar irradiance estimation
solar irradiance forecasting
solar photovoltaic
solar radiation forecasting
statistical analysis
surface solar radiation
time domain electromagnetic method
total sky imagery
velocity volume processing
voxel-design approach
whale optimization algorithm
wind speed
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557427903321
Martins Fernando Ramos  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems
Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems
Autore Li Chaoshun
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (212 p.)
Soggetto topico Physics
Research and information: general
Soggetto non controllato 'S' characteristics
1D-3D coupling model
active power
anomaly detection
approximate entropy
cascaded reservoirs
change point detection
chaotic particle swarms method
comprehensive deterioration index
cosine similarity
degradation trend prediction
doubly-fed variable speed pumped storage power station
doubly-fed variable-speed pumped storage
ensemble empirical mode decomposition
facility agriculture
fractional order PID controller (FOPID)
gated recurrent unit
high proportional renewable power system
Hopf bifurcation
hybrid system
hydraulic oil viscosity
hydraulic PTO
hydro power
hydropower units
light gradient boosting machine
long and short-term neural network
low water head conditions
maximal information coefficient
maximum information coefficient
multi-objective optimization
noise reduction
nonlinear modeling
nonlinear pump turbine characteristics
operation strategy
parameter sensitivity
power yield
pressure pulsation
pumped storage unit
pumped storage units
pumped storage units (PSUs)
reliability
seasonal price
sensitivity analysis
sparrow search algorithm
stability analysis
stochastic dynamic programming (SDP)
successive start-up
thermal-hydraulic characteristics
transition stability
variational mode decomposition
wave energy converter
ISBN 3-0365-5838-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637780603321
Li Chaoshun  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui