top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Assessment of Renewable Energy Resources with Remote Sensing
Assessment of Renewable Energy Resources with Remote Sensing
Autore Martins Fernando Ramos
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (244 p.)
Soggetto topico Research & information: general
Soggetto non controllato metaheuristic
parameter extraction
solar photovoltaic
whale optimization algorithm
cloud detection
digitized image processing
artificial neural networks
solar irradiance estimation
solar irradiance forecasting
solar energy
sky camera
remote sensing
CSP plants
coastal wind measurements
scanning LiDAR
plan position indicator
velocity volume processing
Hazaki Oceanographical Research Station
cloud coverage
image processing
total sky imagery
geothermal energy
geophysical prospecting
time domain electromagnetic method
electrical resistivity tomography
potential well field location
GES-CAL software
smart island
solar radiation forecasting
light gradient boosting machine
multistep-ahead prediction
feature importance
voxel-design approach
shading envelopes
point cloud data
computational design method
passive design strategy
lake breeze influence
hydropower reservoir
solar irradiance enhancement
solar energy resource
wind speed
extreme value analysis
scatterometer
feature engineering
forecasting
graphical user interface software
machine learning
photovoltaic power plant
surface solar radiation
global radiation
satellite
Baltic area
coastline
cloud
convection
climate
renewable energy resource assessment and forecasting
remote sensing data acquisition
data processing
statistical analysis
machine learning techniques
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557427903321
Martins Fernando Ramos  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems
Modeling and Optimal Operation of Hydraulic, Wind and Photovoltaic Power Generation Systems
Autore Li Chaoshun
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (212 p.)
Soggetto topico Research & information: general
Physics
Soggetto non controllato doubly-fed variable-speed pumped storage
Hopf bifurcation
stability analysis
parameter sensitivity
pumped storage unit
degradation trend prediction
maximal information coefficient
light gradient boosting machine
variational mode decomposition
gated recurrent unit
high proportional renewable power system
active power
change point detection
maximum information coefficient
cosine similarity
anomaly detection
thermal-hydraulic characteristics
hydraulic oil viscosity
hydraulic PTO
wave energy converter
pumped storage units
pressure pulsation
noise reduction
sparrow search algorithm
hybrid system
facility agriculture
chaotic particle swarms method
operation strategy
stochastic dynamic programming (SDP)
power yield
seasonal price
reliability
cascaded reservoirs
doubly-fed variable speed pumped storage power station
nonlinear modeling
nonlinear pump turbine characteristics
pumped storage units (PSUs)
successive start-up
‘S’ characteristics
low water head conditions
multi-objective optimization
fractional order PID controller (FOPID)
hydropower units
comprehensive deterioration index
long and short-term neural network
ensemble empirical mode decomposition
approximate entropy
1D–3D coupling model
transition stability
sensitivity analysis
hydro power
ISBN 3-0365-5838-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637780603321
Li Chaoshun  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui