top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Short-Term Load Forecasting 2019
Short-Term Load Forecasting 2019
Autore Gabaldón Antonio
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (324 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato building electric energy consumption forecasting
bus load forecasting
cold-start problem
combined model
component estimation method
convolution neural network
cost analysis
cubic splines
data augmentation
data preprocessing technique
day ahead
DBN
deep learning
deep residual neural network
demand response
demand-side management
distributed energy resources
electric load forecasting
electricity
electricity consumption
electricity demand
feature extraction
feature selection
forecasting
hierarchical short-term load forecasting
hybrid energy system
lasso
load forecasting
Load forecasting
load metering
long short-term memory
modeling and forecasting
multiobjective optimization algorithm
multiple sources
multivariate random forests
Nordic electricity market
pattern similarity
performance criteria
power systems
preliminary load
prosumers
PSR
random forest
real-time electricity load
regressive models
residential load forecasting
seasonal patterns
short term load forecasting
short-term load forecasting
special days
Tikhonov regularization
time series
transfer learning
univariate and multivariate time series analysis
VSTLF
wavenet
weather station selection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557494303321
Gabaldón Antonio  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Uncertainty Quantification Techniques in Statistics
Uncertainty Quantification Techniques in Statistics
Autore Kim Jong-Min
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (128 p.)
Soggetto non controllato ?1 lasso
?2 ridge
accuracy
adapative lasso
adaptive lasso
allele read counts
AUROC
BH-FDR
data envelopment analysis
elastic net
ensembles
entropy
feature selection
gene expression data
gene-expression data
geometric distribution
geometric mean
Gompertz distribution
group efficiency comparison
high-throughput
Kullback-Leibler divergence
Laplacian matrix
lasso
LASSO
low-coverage
MCP
mixture model
next-generation sequencing
probability proportional to size (PPS) sampling
randomization device
resampling
sandwich variance estimator
SCAD
sea surface temperature
semiparametric regression
sensitive attribute
SIS
Skew-Reflected-Gompertz distribution
stochastic frontier model
Yennum et al.'s model
ISBN 3-03928-547-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404091103321
Kim Jong-Min  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui