top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning-Based Machinery Fault Diagnostics
Deep Learning-Based Machinery Fault Diagnostics
Autore Chen Hongtian
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (290 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato abnormal case removal
alumina concentration
aluminum reduction process
anti-noise
attention mechanism
autonomous underwater vehicle
auxiliary model
Bayesian network
bearing fault detection
belief rule base
canonical correlation analysis
canonical variate analysis
case-based reasoning
convolution fusion
convolutional neural network
data augmentation
data-driven
deep residual network
distributed predictive control
disturbance detection
dynamic autoregressive latent variables model
dynamics
event-triggered control
evidential reasoning
evidential reasoning rule
fault detection
fault diagnosis
fault tolerant control
filter
flywheel fault diagnosis
fractional-order calculus theory
fuzzy fault tree analysis
gated recurrent unit
gearbox fault diagnosis
hammerstein output-error systems
high-speed trains
information transformation
intelligent fault diagnosis
interval type-2 Takagi-Sugeno fuzzy model
just-in-time learning
k-nearest neighbor analysis
local outlier factor
LSSVM
multi-innovation identification theory
n/a
nonlinear networked systems
ocean currents
operational optimization
parameter optimization
power transmission system
process monitoring
PSO
robust optimization
sintering process
spatiotemporal feature fusion
stacked pruning sparse denoising autoencoder
state identification
statistical local analysis
subspace identification
system modelling
thruster fault diagnostics
variable time lag
wavelet mutation
ISBN 3-0365-5174-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469103321
Chen Hongtian  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling, Optimization and Design Method of Metal Manufacturing Processes
Modeling, Optimization and Design Method of Metal Manufacturing Processes
Autore Zhang Guoqing
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (214 p.)
Soggetto topico Business strategy
Manufacturing industries
Soggetto non controllato machine learning
reinforcement learning
Q-learning
steelmaking process CAS-OB
decision-support system
optimisation algorithm
3D auxetic structures
selective laser melting
micro assembled
structural surface layer model
A380 alloy
Ca
AlFeSi phase
refine
micro-cutting
grain size
surface integrity
cutting forces
chip formation
OFHC copper C102
amorphous alloys
Fe-based amorphous alloys
difficult-to-machine
assisted machining
high-frequency PCB
drilling
coating technology
tool wear
hot filament chemical vapor deposition
PCBN tool
gray cast iron
surface quality
temperature prediction
weighted regularized extreme learning machine
just-in-time learning
sample similarities
variable correlations
tool edge preparation
orthogonal cutting
numerical simulation
ANOVA
temperature
stress
ECAP
metallic materials
processing parameters
deformation mechanism
ISBN 3-0365-6033-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639996303321
Zhang Guoqing  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui