top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Big Data Analytics and Information Science for Business and Biomedical Applications II
Big Data Analytics and Information Science for Business and Biomedical Applications II
Autore Ahmed S. Ejaz
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (196 p.)
Soggetto topico Information technology industries
Computer science
Soggetto non controllato bandwidth selection
correlation
edge-preserving image denoising
image sequence
jump regression analysis
local smoothing
nonparametric regression
spatio-temporal data
linear mixed model
ridge estimation
pretest and shrinkage estimation
multicollinearity
asymptotic bias and risk
LASSO estimation
high-dimensional data
big data adaptation
dividend estimation
options markets
weighted least squares
online health community
social support
network analysis
cancer
functional principal component analysis
functional predictor
linear mixed-effects model
mobile device
sparse group regularization
wearable device data
Bayesian modeling
functional regression
gestational weight
infant birth weight
joint modeling
longitudinal data
maternal weight gain
transfer learning
deep learning
pretrained neural networks
chest X-ray images
lung diseases
causal structure learning
consistency
FCI algorithm
high dimensionality
nonparametric testing
PC algorithm
fMRI
functional connectivity
brain network
Human Connectome Project
statistics
ISBN 3-0365-5550-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637784003321
Ahmed S. Ejaz  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Systems Analytics and Integration of Big Omics Data
Systems Analytics and Integration of Big Omics Data
Autore Hardiman Gary
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (202 p.)
Soggetto non controllato precision medicine informatics
drug sensitivity
chromatin modification
cell lines
biocuration
neurodegeneration
multivariate analysis
artificial intelligence
epigenetics
missing data
sequencing
clinical data
class imbalance
integrative analytics
algorithm development for network integration
deep phenotype
non-omics data
feature selection
Gene Ontology
miRNA-gene expression networks
omics data
plot visualization
Alzheimer's disease
tissue classification
epidemiological data
proteomic analysis
genotype
RNA expression
indirect effect
multi-omics
dementia
multiomics integration
data integration
phenomics
network topology analysis
challenges
transcriptome
enrichment analysis
regulatory genomics
scalability
heterogeneous data
systemic lupus erythematosus
database
microtubule-associated protein tau
disease variants
genomics
joint modeling
distance correlation
annotation
phenotype
direct effect
curse of dimensionality
gene-environment interactions
logic forest
machine learning
KEGG pathways
multivariate causal mediation
amyloid-beta
bioinformatics pipelines
support vector machine
pharmacogenomics
candidate genes
tissue-specific expressed genes
cognitive impairment
causal inference
ISBN 3-03928-745-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404089603321
Hardiman Gary  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui