top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Big Data Analytics and Information Science for Business and Biomedical Applications II
Big Data Analytics and Information Science for Business and Biomedical Applications II
Autore Ahmed S. Ejaz
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (196 p.)
Soggetto topico Computer science
Information technology industries
Soggetto non controllato asymptotic bias and risk
bandwidth selection
Bayesian modeling
big data adaptation
brain network
cancer
causal structure learning
chest X-ray images
consistency
correlation
deep learning
dividend estimation
edge-preserving image denoising
FCI algorithm
fMRI
functional connectivity
functional predictor
functional principal component analysis
functional regression
gestational weight
high dimensionality
high-dimensional data
Human Connectome Project
image sequence
infant birth weight
joint modeling
jump regression analysis
LASSO estimation
linear mixed model
linear mixed-effects model
local smoothing
longitudinal data
lung diseases
maternal weight gain
mobile device
multicollinearity
network analysis
nonparametric regression
nonparametric testing
online health community
options markets
PC algorithm
pretest and shrinkage estimation
pretrained neural networks
ridge estimation
social support
sparse group regularization
spatio-temporal data
statistics
transfer learning
wearable device data
weighted least squares
ISBN 3-0365-5550-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637784003321
Ahmed S. Ejaz  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Systems Analytics and Integration of Big Omics Data
Systems Analytics and Integration of Big Omics Data
Autore Hardiman Gary
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (202 p.)
Soggetto topico Medicine
Soggetto non controllato algorithm development for network integration
Alzheimer's disease
amyloid-beta
annotation
artificial intelligence
biocuration
bioinformatics pipelines
candidate genes
causal inference
cell lines
challenges
chromatin modification
class imbalance
clinical data
cognitive impairment
curse of dimensionality
data integration
database
deep phenotype
dementia
direct effect
disease variants
distance correlation
drug sensitivity
enrichment analysis
epidemiological data
epigenetics
feature selection
Gene Ontology
gene-environment interactions
genomics
genotype
heterogeneous data
indirect effect
integrative analytics
joint modeling
KEGG pathways
logic forest
machine learning
microtubule-associated protein tau
miRNA-gene expression networks
missing data
multi-omics
multiomics integration
multivariate analysis
multivariate causal mediation
n/a
network topology analysis
neurodegeneration
non-omics data
omics data
pharmacogenomics
phenomics
phenotype
plot visualization
precision medicine informatics
proteomic analysis
regulatory genomics
RNA expression
scalability
sequencing
support vector machine
systemic lupus erythematosus
tissue classification
tissue-specific expressed genes
transcriptome
ISBN 3-03928-745-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404089603321
Hardiman Gary  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui