Advanced Numerical Methods in Applied Sciences / Felice Lavernaro, Luigi Brugnano
| Advanced Numerical Methods in Applied Sciences / Felice Lavernaro, Luigi Brugnano |
| Autore | Lavernaro Felice |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (306 p.) |
| Soggetto non controllato |
structured matrices
numerical methods time fractional differential equations hierarchical splines finite difference methods null-space highly oscillatory problems stochastic Volterra integral equations displacement rank constrained Hamiltonian problems hyperbolic partial differential equations higher-order finite element methods continuous geometric average spectral (eigenvalue) and singular value distributions generalized locally Toeplitz sequences Volterra integro–differential equations B-spline discontinuous Galerkin methods adaptive methods Cholesky factorization energy-conserving methods order collocation method Poisson problems time harmonic Maxwell’s equations and magnetostatic problems tree multistep methods stochastic differential equations optimal basis finite difference method elementary differential gradient system curl–curl operator conservative problems line integral methods stochastic multistep methods Hamiltonian Boundary Value Methods limited memory boundary element method convergence analytical solution preconditioners asymptotic stability collocation methods histogram specification local refinement Runge–Kutta edge-preserving smoothing numerical analysis THB-splines BS methods barrier options stump shock waves and discontinuities mean-square stability Volterra integral equations high order discontinuous Galerkin finite element schemes B-splines vectorization and parallelization initial value problems one-step methods scientific computing fractional derivative linear systems Hamiltonian problems low rank completion ordinary differential equations mixed-index problems edge-histogram Hamiltonian PDEs matrix ODEs HBVMs floating strike Asian options Hermite–Obreshkov methods generalized Schur algorithm Galerkin method symplecticity high performance computing isogeometric analysis discretization of systems of differential equations |
| ISBN |
9783038976677
3038976679 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346690203321 |
Lavernaro Felice
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Numerical and Symbolic Computation : Developments and Applications
| Numerical and Symbolic Computation : Developments and Applications |
| Autore | Loja Maria Amélia Ramos |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (140 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
Brinkman
cancer CIS 2014 computable document format contractions of algebras Darcy discriminant analysis dynamic and interactive tool eigenvalue differential problems F-Tool concept GNU Octave Heisenberg algebras HIV/AIDS model incompressible interstitial flow invariant functions isogeometric analysis Lie algebras Malcev algebras marketing innovation multiple linear regression n/a nonholonomic systems numerical algorithms NURBS open source code for optimal control through Pontryagin Maximum Principle optimal control PES(Linear)-Tool shear stress socio-economic sciences spectral methods Sturm-Liouville problems symbolic computation Tau method Wolfram Mathematica |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Numerical and Symbolic Computation |
| Record Nr. | UNINA-9910557134303321 |
Loja Maria Amélia Ramos
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||