Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces [[electronic resource] /] / Joram Lindenstrauss, David Preiss, Jaroslav Tiser |
Autore | Lindenstrauss Joram <1936-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, : Princeton University Press, 2012 |
Descrizione fisica | 1 online resource (436 p.) |
Disciplina | 515/.88 |
Altri autori (Persone) |
PreissDavid
TišerJaroslav <1957-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Banach spaces
Calculus of variations Functional analysis |
Soggetto non controllato |
Asplund space
Banach space Borel sets Euclidean space Frechet differentiability Fréchet derivative Fréchet differentiability Fréchet smooth norm Gâteaux derivative Gâteaux differentiability Hilbert space Lipschitz function Lipschitz map Radon-Nikodým property asymptotic uniform smoothness asymptotically smooth norm asymptotically smooth space bump completeness cone-monotone function convex function deformation derivative descriptive set theory flat surface higher dimensional space infinite dimensional space irregular behavior irregularity point linear operators low Borel classes lower semicontinuity mean value estimate modulus multidimensional mean value nonlinear functional analysis nonseparable space null sets perturbation function perturbation game perturbation porosity porous sets regular behavior regular differentiability regularity parameter renorming separable determination separable dual separable space slice smooth bump subspace tensor products three-dimensional space two-dimensional space two-player game variational principle variational principles Γ-null sets ε-Fréchet derivative ε-Fréchet differentiability σ-porous sets |
ISBN |
1-283-37995-3
9786613379955 1-4008-4269-7 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Chapter One: Introduction -- Chapter Two: Gâteaux differentiability of Lipschitz functions -- Chapter Three: Smoothness, convexity, porosity, and separable determination -- Chapter Four: ε-Fréchet differentiability -- Chapter Five: Γ-null and Γn-null sets -- Chapter Six: Férchet differentiability except for Γ-null sets -- Chapter Seven: Variational principles -- Chapter Eight: Smoothness and asymptotic smoothness -- Chapter Nine: Preliminaries to main results -- Chapter Ten: Porosity, Γn- and Γ-null sets -- Chapter Eleven: Porosity and ε-Fréchet differentiability -- Chapter Twelve: Fréchet differentiability of real-valued functions -- Chapter Thirteen: Fréchet differentiability of vector-valued functions -- Chapter Fourteen: Unavoidable porous sets and nondifferentiable maps -- Chapter Fifteen: Asymptotic Fréchet differentiability -- Chapter Sixteen: Differentiability of Lipschitz maps on Hilbert spaces -- Bibliography -- Index -- Index of Notation |
Record Nr. | UNINA-9910789737103321 |
Lindenstrauss Joram <1936-> | ||
Princeton, : Princeton University Press, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces / / Joram Lindenstrauss, David Preiss, Jaroslav Tiser |
Autore | Lindenstrauss Joram <1936-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, : Princeton University Press, 2012 |
Descrizione fisica | 1 online resource (436 p.) |
Disciplina | 515/.88 |
Altri autori (Persone) |
PreissDavid
TišerJaroslav <1957-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Banach spaces
Calculus of variations Functional analysis |
Soggetto non controllato |
Asplund space
Banach space Borel sets Euclidean space Frechet differentiability Fréchet derivative Fréchet differentiability Fréchet smooth norm Gâteaux derivative Gâteaux differentiability Hilbert space Lipschitz function Lipschitz map Radon-Nikodým property asymptotic uniform smoothness asymptotically smooth norm asymptotically smooth space bump completeness cone-monotone function convex function deformation derivative descriptive set theory flat surface higher dimensional space infinite dimensional space irregular behavior irregularity point linear operators low Borel classes lower semicontinuity mean value estimate modulus multidimensional mean value nonlinear functional analysis nonseparable space null sets perturbation function perturbation game perturbation porosity porous sets regular behavior regular differentiability regularity parameter renorming separable determination separable dual separable space slice smooth bump subspace tensor products three-dimensional space two-dimensional space two-player game variational principle variational principles Γ-null sets ε-Fréchet derivative ε-Fréchet differentiability σ-porous sets |
ISBN |
1-283-37995-3
9786613379955 1-4008-4269-7 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Chapter One: Introduction -- Chapter Two: Gâteaux differentiability of Lipschitz functions -- Chapter Three: Smoothness, convexity, porosity, and separable determination -- Chapter Four: ε-Fréchet differentiability -- Chapter Five: Γ-null and Γn-null sets -- Chapter Six: Férchet differentiability except for Γ-null sets -- Chapter Seven: Variational principles -- Chapter Eight: Smoothness and asymptotic smoothness -- Chapter Nine: Preliminaries to main results -- Chapter Ten: Porosity, Γn- and Γ-null sets -- Chapter Eleven: Porosity and ε-Fréchet differentiability -- Chapter Twelve: Fréchet differentiability of real-valued functions -- Chapter Thirteen: Fréchet differentiability of vector-valued functions -- Chapter Fourteen: Unavoidable porous sets and nondifferentiable maps -- Chapter Fifteen: Asymptotic Fréchet differentiability -- Chapter Sixteen: Differentiability of Lipschitz maps on Hilbert spaces -- Bibliography -- Index -- Index of Notation |
Record Nr. | UNINA-9910823398203321 |
Lindenstrauss Joram <1936-> | ||
Princeton, : Princeton University Press, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|