top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Statistical Machine Learning for Human Behaviour Analysis
Statistical Machine Learning for Human Behaviour Analysis
Autore Moeslund Thomas
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (300 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato 3D convolutional neural networks
accuracy
action recognition
adaptive classifiers
age classification
attention allocation
attention behavior
biometric recognition
blurring detection
body movements
boundary segmentation
categorical data
committee of classifiers
concept drift
context-aware framework
convolutional neural network
deep learning
discrete stationary wavelet transform
emotion recognition
Empatica E4
ensemble methods
face analysis
face segmentation
false negative rate
fibromyalgia
fingerprint image enhancement
fingerprint quality
foggy image
frequency domain
gait event
gender classification
gestures
hand sign language
head pose estimation
hybrid entropy
individual behavior estimation
information entropy
interpretable machine learning
k-means clustering
Kinect sensor
Learning Using Concave and Convex Kernels
multi-modal
multi-objective evolutionary algorithms
multimodal-based human identification
neural networks
noisy image
object contour detection
privacy
privacy-aware
profoundly deaf
recurrent concepts
restricted Boltzmann machine (RBM)
rule-based classifiers
saliency detection
self-reported survey
silhouettes difference
single pixel single photon image acquisition
singular point detection
spatial domain
spectrograms
speech
speech emotion recognition
statistical-based time-frequency domain and crowd condition
stock price direction prediction
time-of-flight
toe-off detection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557288403321
Moeslund Thomas  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Convergence of Human and Artificial Intelligence on Clinical Care - Part I
The Convergence of Human and Artificial Intelligence on Clinical Care - Part I
Autore Abedi Vida
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (188 p.)
Soggetto topico Medicine
Soggetto non controllato ADHD
alpha-2-adrenergic agonists
aneurysm surgery
artificial intelligence
artificial neural network
bariatric surgery
Bayesian network
C. difficile infection
cardiac ultrasound
cerebrovascular disorders
chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML) for acute monoblastic leukemia and acute monocytic leukemia
clinical decision support system
clipping time
cluster analysis
comorbidity
complex diseases
concordance between hematopathologists
COVID-19
deep learning
digital imaging
echocardiography
EHR
electronic health record
electronic health records
explainable machine learning
health-related quality of life
healthcare
human factors
improving diagnosis accuracy
imputation
inflammatory bowel disease
interpretable machine learning
ischemic stroke
laboratory measures
larynx cancer
machine learning
machine learning-enabled decision support system
mechanical ventilation
medical informatics
monocytes
non-stimulants
osteoarthritis
outcome prediction
passive adherence
pharmacotherapy
portable ultrasound
promonocytes and monoblasts
recurrent stroke
respiratory failure
risk factors
SARS-CoV-2
septic shock
social media
stimulants
stroke
temporary artery occlusion
trust
Twitter
voice change
voice pathology classification
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557617803321
Abedi Vida  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui