top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Statistical Machine Learning for Human Behaviour Analysis
Statistical Machine Learning for Human Behaviour Analysis
Autore Moeslund Thomas
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (300 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato multi-objective evolutionary algorithms
rule-based classifiers
interpretable machine learning
categorical data
hand sign language
deep learning
restricted Boltzmann machine (RBM)
multi-modal
profoundly deaf
noisy image
ensemble methods
adaptive classifiers
recurrent concepts
concept drift
stock price direction prediction
toe-off detection
gait event
silhouettes difference
convolutional neural network
saliency detection
foggy image
spatial domain
frequency domain
object contour detection
discrete stationary wavelet transform
attention allocation
attention behavior
hybrid entropy
information entropy
single pixel single photon image acquisition
time-of-flight
action recognition
fibromyalgia
Learning Using Concave and Convex Kernels
Empatica E4
self-reported survey
speech emotion recognition
3D convolutional neural networks
k-means clustering
spectrograms
context-aware framework
accuracy
false negative rate
individual behavior estimation
statistical-based time-frequency domain and crowd condition
emotion recognition
gestures
body movements
Kinect sensor
neural networks
face analysis
face segmentation
head pose estimation
age classification
gender classification
singular point detection
boundary segmentation
blurring detection
fingerprint image enhancement
fingerprint quality
speech
committee of classifiers
biometric recognition
multimodal-based human identification
privacy
privacy-aware
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557288403321
Moeslund Thomas  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Convergence of Human and Artificial Intelligence on Clinical Care - Part I
The Convergence of Human and Artificial Intelligence on Clinical Care - Part I
Autore Abedi Vida
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (188 p.)
Soggetto topico Medicine
Soggetto non controllato machine learning-enabled decision support system
improving diagnosis accuracy
Bayesian network
bariatric surgery
health-related quality of life
comorbidity
voice change
larynx cancer
machine learning
deep learning
voice pathology classification
imputation
electronic health records
EHR
laboratory measures
medical informatics
inflammatory bowel disease
C. difficile infection
osteoarthritis
complex diseases
healthcare
artificial intelligence
interpretable machine learning
explainable machine learning
septic shock
clinical decision support system
electronic health record
cerebrovascular disorders
stroke
SARS-CoV-2
COVID-19
cluster analysis
risk factors
ischemic stroke
outcome prediction
recurrent stroke
cardiac ultrasound
echocardiography
portable ultrasound
aneurysm surgery
temporary artery occlusion
clipping time
artificial neural network
digital imaging
monocytes
promonocytes and monoblasts
chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML) for acute monoblastic leukemia and acute monocytic leukemia
concordance between hematopathologists
mechanical ventilation
respiratory failure
ADHD
social media
Twitter
pharmacotherapy
stimulants
alpha-2-adrenergic agonists
non-stimulants
trust
passive adherence
human factors
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557617803321
Abedi Vida  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui