top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mining Safety and Sustainability I
Mining Safety and Sustainability I
Autore Dong Longjun
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (348 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato top-coal caving mining
process parameters
decision model
BP neural network
similaritysimulation test
time-dependent cohesion
traction force
deep-sea sediment
tracked miner
rheology
cemented paste backfill
curing conditions
mechanical properties
mathematical strength model
AMD
phytoremediation
sulfate
hydroponic experiment
wetland plants
ecological pollution
tailings dam
safety factor
quantitative evaluation
dynamic weight
comprehensivediagnosis of health
rock formations
surface subsidence law
surface subsidence process
3D test device
3Dlaser scanning
mine ventilation network
wind speed sensors distribution
air volume reconstruction
independent cut set
surface subsidence
probability integration
loess donga
superimposed calculation
additional displacement of slope mining slip
mining water hazard
microseismic monitoring
intelligent recognition
feature extraction
support vector machine
classification model
freeze–thaw cycles
tailings
mechanical behavior
SEM
MIP
thick aeolian sand
shallow buried thick seam
overburden failure
ground damage
numerical simulation
rock mechanics
cyclic impact
chemical corrosion
axial compression
strength degradation
pipe transportation system test
pressure loss
random forest algorithm
filling-aided design
vibration signals
neural network
drilling state identification algorithm
drilling depth
monitoring-while-drilling method
 
ISBN 3-0365-4688-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469303321
Dong Longjun  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Advances and Applications of Machine Learning in Metal Forming Processes
Recent Advances and Applications of Machine Learning in Metal Forming Processes
Autore Prates Pedro
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (210 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Mining technology & engineering
Soggetto non controllato sheet metal forming
uncertainty analysis
metamodeling
machine learning
hot rolling strip
edge defects
intelligent recognition
convolutional neural networks
deep-drawing
kriging metamodeling
multi-objective optimization
FE (Finite Element) AutoForm robust analysis
defect prediction
mechanical properties prediction
high-dimensional data
feature selection
maximum information coefficient
complex network clustering
ring rolling
process energy estimation
metal forming
thermo-mechanical FEM analysis
artificial neural network
aluminum alloy
mechanical property
UTS
topological optimization
artificial neural networks (ANN)
machine learning (ML)
press-brake bending
air-bending
three-point bending test
sheet metal
buckling instability
oil canning
artificial intelligence
convolution neural network
hot rolled strip steel
defect classification
generative adversarial network
attention mechanism
deep learning
mechanical constitutive model
finite element analysis
plasticity
parameter identification
full-field measurements
ISBN 3-0365-5772-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637782503321
Prates Pedro  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui