top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Mining Safety and Sustainability I
Mining Safety and Sustainability I
Autore Dong Longjun
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (348 p.)
Soggetto topico History of engineering & technology
Technology: general issues
Soggetto non controllato  
mining water hazard
rock formations
3D test device
3Dlaser scanning
additional displacement of slope mining slip
air volume reconstruction
AMD
axial compression
BP neural network
cemented paste backfill
chemical corrosion
classification model
comprehensivediagnosis of health
curing conditions
cyclic impact
decision model
deep-sea sediment
drilling depth
drilling state identification algorithm
dynamic weight
ecological pollution
feature extraction
filling-aided design
freeze-thaw cycles
ground damage
hydroponic experiment
independent cut set
intelligent recognition
loess donga
mathematical strength model
mechanical behavior
mechanical properties
microseismic monitoring
mine ventilation network
MIP
monitoring-while-drilling method
neural network
numerical simulation
overburden failure
phytoremediation
pipe transportation system test
pressure loss
probability integration
process parameters
quantitative evaluation
random forest algorithm
rheology
rock mechanics
safety factor
SEM
shallow buried thick seam
similaritysimulation test
strength degradation
sulfate
superimposed calculation
support vector machine
surface subsidence
surface subsidence law
surface subsidence process
tailings
tailings dam
thick aeolian sand
time-dependent cohesion
top-coal caving mining
tracked miner
traction force
vibration signals
wetland plants
wind speed sensors distribution
ISBN 3-0365-4688-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619469303321
Dong Longjun  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Advances and Applications of Machine Learning in Metal Forming Processes
Recent Advances and Applications of Machine Learning in Metal Forming Processes
Autore Prates Pedro
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (210 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Mining technology & engineering
Soggetto non controllato sheet metal forming
uncertainty analysis
metamodeling
machine learning
hot rolling strip
edge defects
intelligent recognition
convolutional neural networks
deep-drawing
kriging metamodeling
multi-objective optimization
FE (Finite Element) AutoForm robust analysis
defect prediction
mechanical properties prediction
high-dimensional data
feature selection
maximum information coefficient
complex network clustering
ring rolling
process energy estimation
metal forming
thermo-mechanical FEM analysis
artificial neural network
aluminum alloy
mechanical property
UTS
topological optimization
artificial neural networks (ANN)
machine learning (ML)
press-brake bending
air-bending
three-point bending test
sheet metal
buckling instability
oil canning
artificial intelligence
convolution neural network
hot rolled strip steel
defect classification
generative adversarial network
attention mechanism
deep learning
mechanical constitutive model
finite element analysis
plasticity
parameter identification
full-field measurements
ISBN 3-0365-5772-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910637782503321
Prates Pedro  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui