Kinetic Theory and Swarming Tools to Modeling Complex Systems—Symmetry problems in the Science of Living Systems |
Autore | Bellomo Nicola |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (118 p.) |
Soggetto non controllato |
short- and long-range interactions
living systems stress conditions learning symmetric interactions active particles conformist society kinetic equations kinetic models complex systems safety haptotaxis opinion dynamics multiscale modeling individualistic society CVaR kinetic theory social dynamics boundary conditions pattern formation crowd dynamics integro-differential equations scaling Efficient frontier cell movement vehicular traffic Crowd dynamics learning dynamics |
ISBN | 3-03928-880-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910404075503321 |
Bellomo Nicola
![]() |
||
MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Mathematical and Numerical Analysis of Nonlinear Evolution Equations : Advances and Perspectives |
Autore | Bianca Carlo |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (208 p.) |
Soggetto topico |
Research & information: general
Mathematics & science |
Soggetto non controllato |
boundedness
delay Hopf bifurcation Lyapunov functional stability SEIQRS-V model kinetic theory integro-differential equations complex systems evolution equations thermostat nonequilibrium stationary states discrete Fourier transform discrete kinetic theory nonlinearity fractional operators Cahn–Hilliard systems well-posedness regularity optimal control necessary optimality conditions Schrödinger equation Davydov’s model partial differential equations exact solutions fractional derivative abstract Cauchy problem C0−semigroup inverse problem active particles autoimmune disease degenerate equations real activity variable Cauchy problem electric circuit equations wardoski contraction almost (s, q)—Jaggi-type b—metric-like spaces second-order differential equations dynamical systems compartment model epidemics basic reproduction number |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Mathematical and Numerical Analysis of Nonlinear Evolution Equations |
Record Nr. | UNINA-9910557602903321 |
Bianca Carlo
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Recent Advances in Single-Particle Tracking: Experiment and Analysis |
Autore | Szwabiński Janusz |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (238 p.) |
Soggetto topico |
Research & information: general
Physics |
Soggetto non controllato |
diauxic growth
replicator equation mesoscopic model integro-differential equations anomalous diffusion statistical analysis single-particle tracking trajectory classification fractional Brownian motion estimation autocovariance function neural network Monte Carlo simulations multifractional Brownian motion power of the statistical test machine learning classification feature engineering confinement information theory Brownian particle stochastic thermodynamics CTRW diffusing-diffusivity occupation time statistics wound healing dynamics single pseudo-particle tracking phase contrast image segmentation 3D single-particle tracking Fisher information non-uniform illumination SPT deep learning residual neural networks random walk heterogeneous endosomes single particle trajectory stochastic processes trapping |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Recent Advances in Single-Particle Tracking |
Record Nr. | UNINA-9910566467703321 |
Szwabiński Janusz
![]() |
||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|