top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Energy Systems Analysis and Modelling towards Decarbonisation
Energy Systems Analysis and Modelling towards Decarbonisation
Autore Fragkos Panagiotis
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (240 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato GEM-E3-FIT
low-carbon R&
D
innovation-induced growth
endogenous technology progress
unilateral climate policy
carbon leakage
industrial relocation
border carbon adjustment
electric vehicles
electricity recharging infrastructure
business models
equilibrium programming
Greek EV mobility 2030
private investments in infrastructure
combined gas-steam cycles
efficiency
heat exchange in Heat Recovery Steam Generators (HRSG)
economic analysis
cost management
managerial decisions
fortune 500
carbon disclosure
financial performance
COVID-19
economic recovery
stimulus packages
climate scenarios
integrated assessment modelling
integrated energy system
scheduling
energy trade
smart contract
BECCS
CCS
biomass
climate neutrality
greenhouse gas
emission
abatement cost
EU climate/energy policy
Fit for 55
European Union
Green Deal
burden sharing
effort sharing regulation
emissions trading system
energy system analysis
TIMES PanEU
NEWAGE
agent-based modelling
low carbon electricity system
investment decisions
heterogeneous agents
value factor of wind
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910566469003321
Fragkos Panagiotis  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Integration of Renewables in Power Systems by Multi-Energy System Interaction
Integration of Renewables in Power Systems by Multi-Energy System Interaction
Autore Bak-Jensen Birgitte
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (358 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato hybrid electricity-natural gas energy systems
power to gas (P2G)
low-carbon
economic environmental dispatch
trust region method
Levenberg-Marquardt method
integrated energy park
park partition
double-layer optimal scheduling
non-cooperative game
Nash equilibrium
energy flexibility
power-to-heat
multi energy system
flexible demand
thermal storage
electric boiler
estimation of thermal demand
integrated energy system
integrated demand response
medium- and long-term
system dynamics
user decision
photovoltaic generation
ultralow-frequency oscillation
small-signal model
eigenvalue analysis
damping torque
triple active bridge
integrated energy systems
DC grid
isolated bidirectional DC-DC converter
multiport converter
combined heat and power system
wind power uncertainty
scenario method
temporal dependence
optimization scheduling
hydrogen
multi-energy systems
power system economics
renewable energy generation
whole system modelling
local energy management systems
multi-objective optimization
rolling time-horizon
emission abatement strategies
distributed energy systems
enhance total transfer capability
day-ahead thermal generation scheduling
reduce curtailed wind power
CO2 emissions
commercial buildings
flexibility quantification
flexibility optimization
HVAC systems
network operation
residential buildings
dissemination
renewable energy policy
renewable energy subsidies
solar PV
TSTTC of transmission lines
sensitivity between TSTTC and reactive power
reactive power control method
urban integrated heat and power system
random fluctuations of renewable energy
flexibility scheduling
temperature dynamics of the urban heat network
heat pumps
power grid
gas distribution
grid expansion planning
load-profiles
energy system analysis
modeling
multi-energy system
smart energy system
self-sufficiency
dynamic market
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557313203321
Bak-Jensen Birgitte  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning for Energy Systems
Machine Learning for Energy Systems
Autore Sidorov Denis N
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (272 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato vacuum tank degasser
rule extraction
extreme learning machine
classification and regression trees
wind power: wind speed: T–S fuzzy model: forecasting
linearization
machine learning
photovoltaic output power forecasting
hybrid interval forecasting
relevance vector machine
sample entropy
ensemble empirical mode decomposition
high permeability renewable energy
blockchain technology
energy router
QoS index of energy flow
MOPSO algorithm
scheduling optimization
Adaptive Neuro-Fuzzy Inference System
insulator fault forecast
wavelet packets
time series forecasting
power quality
harmonic parameter
harmonic responsibility
monitoring data without phase angle
parameter estimation
blockchain
energy internet
information security
forecasting
clustering
energy systems
classification
integrated energy system
risk assessment
component accident set
vulnerability
hybrid AC/DC power system
stochastic optimization
renewable energy source
Volterra models
wind turbine
maintenance
fatigue
power control
offshore wind farm
Interfacial tension
transformer oil parameters
harmonic impedance
traction network
harmonic impedance identification
linear regression model
data evolution mechanism
cast-resin transformers
abnormal defects
partial discharge
pattern recognition
hierarchical clustering
decision tree
industrial mathematics
inverse problems
intelligent control
artificial intelligence
energy management system
smart microgrid
optimization
Volterra equations
energy storage
load leveling
cyber-physical systems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557678803321
Sidorov Denis N  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modelling, Simulation and Control of Thermal Energy Systems
Modelling, Simulation and Control of Thermal Energy Systems
Autore Lee Kwang Y
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (228 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato supercritical circulating fluidized bed
boiler-turbine unit
active disturbance rejection control
burning carbon
genetic algorithm
Solar-assisted coal-fired power generation system
Singular weighted method
load dispatch
CSP plant model
transient analysis
power tracking control
two-tank direct energy storage
electronic device
flip chip component
thermal stress
thermal fatigue
life prediction
combustion engine efficiency
dynamic states
artificial neural network
dynamic modeling
thermal management
parameter estimation
energy storage operation and planning
electric and solar vehicles
ultra-supercritical unit
deep neural network
stacked auto-encoder
maximum correntropy
heat exchanger
forced convection
film coefficient
heat transfer
water properties
integrated energy system
operational optimization
air–fuel ratio
combustion control
dynamic matrix control
power plant control
high temperature low sag conductor
coefficient of thermal expansion
overhead conductor
low sag performance
chemical looping
wavelets
NARMA model
generalized predictive control (GPC)
steam supply scheduling
exergetic analysis
multi-objective
ε-constraint method
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557113403321
Lee Kwang Y  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optimisation Models and Methods in Energy Systems
Optimisation Models and Methods in Energy Systems
Autore Antunes Carlos Henggeler
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (192 p.)
Soggetto non controllato mixed integer linear programming
fuzzy set theory
stochastic programming
mixed integer linear programing
variable renewable power
generation efficiency
optimization
flexibility option
portfolio analysis
firefighting
semi-mean-absolute deviation model
component outage
energy network
predicted mean vote (PMV)
generation expansion planning
building microgrid
demand side management
stochastic robust optimization
oil storage plants
long-term forecasting
multi-criteria decision making (MCDM)
life cycle cost
graph theory
scenario-based multistage stochastic programming
optimal power generation mix
heating ventilation and air-conditioning (HVAC)
intermittent sources
electric-power structure adjustment
technique for the order of preference by similarity to the ideal solution (TOPSIS)
integrated energy system
Markov chain Monte Carlo
nondominated sorting genetic algorithm (NSGA)
domino effect
energy system management model
electrical distribution systems
microgrid operation
influence diagram
net demand
wind power forecasting
energy conservation and emissions reduction
feasible operation region
meshed topology
occupancy-based control
islanded microgrids
combined heat and power
multi-objective optimization
re-optimization and rescheduling
ISBN 3-03921-119-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367569203321
Antunes Carlos Henggeler  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui