top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Divergence Measures : Mathematical Foundations and Applications in Information-Theoretic and Statistical Problems
Divergence Measures : Mathematical Foundations and Applications in Information-Theoretic and Statistical Problems
Autore Sason Igal
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (256 p.)
Soggetto topico Research & information: general
Mathematics & science
Soggetto non controllato Bregman divergence
f-divergence
Jensen-Bregman divergence
Jensen diversity
Jensen-Shannon divergence
capacitory discrimination
Jensen-Shannon centroid
mixture family
information geometry
difference of convex (DC) programming
conditional Rényi divergence
horse betting
Kelly gambling
Rényi divergence
Rényi mutual information
relative entropy
chi-squared divergence
f-divergences
method of types
large deviations
strong data-processing inequalities
information contraction
maximal correlation
Markov chains
information inequalities
mutual information
Rényi entropy
Carlson-Levin inequality
information measures
hypothesis testing
total variation
skew-divergence
convexity
Pinsker's inequality
Bayes risk
statistical divergences
minimum divergence estimator
maximum likelihood
bootstrap
conditional limit theorem
Bahadur efficiency
α-mutual information
Augustin-Csiszár mutual information
data transmission
error exponents
dimensionality reduction
discriminant analysis
statistical inference
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Divergence Measures
Record Nr. UNINA-9910576871103321
Sason Igal  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods
Nonparametric Statistical Inference with an Emphasis on Information-Theoretic Methods
Autore Mielniczuk Jan
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (226 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Mechanical engineering & materials
Soggetto non controllato high-dimensional time series
nonstationarity
network estimation
change points
kernel estimation
high-dimensional regression
loss function
random predictors
misspecification
consistent selection
subgaussianity
generalized information criterion
robustness
statistical learning theory
information theory
entropy
parameter estimation
learning systems
privacy
prediction methods
misclassification risk
model misspecification
penalized estimation
supervised classification
variable selection consistency
archimedean copula
consistency
estimation
extreme-value copula
tail dependency
multivariate analysis
conditional mutual information
CMI
information measures
nonparametric variable selection criteria
gaussian mixture
conditional infomax feature extraction
CIFE
joint mutual information criterion
JMI
generative tree model
Markov blanket
minimum distance estimation
maximum likelihood estimation
influence functions
adaptive splines
B-splines
right-censored data
semiparametric regression
synthetic data transformation
time series
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576873203321
Mielniczuk Jan  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui