Biotechnology for Sustainability and Social Well Being
| Biotechnology for Sustainability and Social Well Being |
| Autore | Show Pau Loke |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (250 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
activated carbon
alginate amino acids amylase applications bacteria sequencing biodiesel biodiesel production bioeconomy biofertilizers biohydrogen production biomass biomaterials bioprocesses breast milk carbon dioxide cellulase chemical fertilizer chitosan CMC co-loaded nanoparticles culture media date fruits date sugar degree of substitution deoxygenation diabetes mellitus eddy current electric field electronics package entrapment excipient extraction fatty acid methyl ester fermented food Ficus carica fuel functional food Fusarium heterosporum GABA green fuel heterogeneous catalyst holocellulose hydrophobic modification immobilised cells induction heating l-ascorbic acid Lactobacillus isolation lag phase leaf lignocellulosic biomass lipase liquid biphasic flotation magnetic field microorganism n/a nanofiltration non-edible non-protein amino acid oil oil palm seedlings nursery optimization Pakistan physico-chemical characteristics phytoconstituents plant growth promoting rhizobacteria policy polygonum protein proteomics proximate analysis qualitative research saccharification sago hampas social sustainability social welfare solder soy sauce fermentation sperm quality substrate feeding sustainability sustainable supply chain management (SSSCM) thymoquinone TM110 single-mode cavity waste cooking oil |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910674045703321 |
Show Pau Loke
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Energy Consumption in a Smart City
| Energy Consumption in a Smart City |
| Autore | Nastasi Benedetto |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (270 p.) |
| Soggetto topico |
Physics
Research & information: general |
| Soggetto non controllato |
asymmetric duty cycle control
augmented reality bifilar coil building energy flexibility building energy load Building Information Modelling (BIM) building operation and maintenance building performance assessment building performance simulation buildings office buildings retrofitting carbon emission intensity climate change CO2 emission cooling load daily energy need decarbonisation of neighbourhoods difference-in-differences digital transformation Digital Twin (DT) digital twins district energy infrastructure economic feasibility energy consumption energy saving energy transition extended reality future weather Geographic Information System (GIS) GIS Green Building Index green innovation historical buildings HOMER software immersive technologies indoor environment quality induction heating load shifting metal melting metaverse mixed reality n/a nZEB occupant's comfort occupants' satisfaction operative temperature peak clipping phase shift control positive energy district post-occupancy evaluation pulse density modulation pulse duty cycle control Renewable Energy Systems (RESs) Revit software's series resonant inverter smart city policy solar gains thermal load TRNSYS tropical climate variable frequency control virtual reality window allocation Zero Energy District (ZED) |
| ISBN | 3-0365-5963-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910637793403321 |
Nastasi Benedetto
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environment-Friendly Construction Materials: Volume 1 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
| Environment-Friendly Construction Materials: Volume 1 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao |
| Autore | Hoff Inge |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (280 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
| ISBN |
9783039210138
3039210130 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346838003321 |
Hoff Inge
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environment-Friendly Construction Materials: Volume 2 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
| Environment-Friendly Construction Materials: Volume 2 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao |
| Autore | Hoff Inge |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (256 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
| ISBN |
9783039210152
3039210157 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346837903321 |
Hoff Inge
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environment-Friendly Construction Materials: Volume 3 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao
| Environment-Friendly Construction Materials: Volume 3 / Inge Hoff, Shaopeng Wu, Serji Amirkhanian, Yue Xiao |
| Autore | Hoff Inge |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (270 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
fluorescence spectrum
microstructure regeneration sensitivity analysis asphalt mixes limestone aggregates bio-oil plateau value of dissipated strain energy ratio diatomite water-leaching pretreatment fatigue performance ultra-thin wearing course recycling aggregate design optimization induction heating vibration noise consumption bitumen relaxation viscous-elastic temperature field evaluation healing agents transmittance Ca-alginate microcapsules artificially aged asphalt mixture sequencing batch Chlorella reactor waste concrete plant ash lixivium steel fiber ultra-high performance concrete titanate coupling agent SEM self-healing physical properties porous pumice thermal–mechanical properties aggregate morphology asphalt mortar adhesion energy styrene–butadiene–styrene (SBS) modified bitumen water solute exposure emulsified asphalt demulsification speed mineral-asphalt mixtures aging processes phase change materials surface texture long-term drying shrinkage contact angle aging depth asphalt calcium alginate capsules nitrogen and phosphorus removal micro-morphology rice husk ash low-temperature cement hydrophobic nanosilica asphalt mixture thickness combinations layered double hydroxide initial self-healing temperature environmentally friendly construction materials epoxidized soybean oil limestone chemical evolutions temperature sensitivity characteristics micro-surfacing cement emulsified asphalt mixture dynamic characteristics high-strength concrete flame retardant durability creep damping damage constitutive model Ultra-High Performance Concrete (UHPC) granite aggregate diatomite-modified asphalt mixture healing model asphalt combustion freeze-thaw cycle SBS-modified bitumen workability graphene flow behavior index fluidity parametrization fatigue property rankinite railway application crystallization sensitivity aqueous solute compositions pozzolanic reaction self-healing asphalt recycled material artificial neural network rheological properties molecular dynamic simulation building envelopes aluminum hydroxide crumb rubber optimization viscoelasticity building energy conservation diffusing anti-rutting agent molecular bridge engineered cementitious composites (ECC) pavement performance morphology colloidal structure hydrophilic nanosilica construction materials road engineering laboratory evaluation rejuvenator fatigue equation aggregates three-point bending fatigue test energy-based approach aggregate from sanitary ceramic wastes polyacrylic acid mastic CO2 specific surface area aggregate image measurement system solubilizer flexibility simplex lattice design SBS/CRP-modified bitumen water stability fatigue life rejuvenating systems skid-resistance reclaimed asphalt pavement rheology hydration characteristic surface energy modified asphalt materials asphalt pavement stripping test SOD tensile stresses ultraviolet radiation basalt fiber “blue-shift” polyvinyl alcohol sanitary ceramics dynamic moduli aggregate characteristics compound modify expanded graphite steel slag induced healing thermal property effective heating depth dissipated strain energy MDA mechanical behavior plateau value of permanent deformation ratio long-term field service crack healing desulphurization gypsum residues pavement failure rejuvenation interfacial transition zone combination polyethylene glycol adsorption tensile strains cold recycled asphalt mixture resistance to deformations asphalt-aggregate adhesion viscoelastic properties damage evolution carbonation microwave heating amorphous silica high-modulus asphalt mixture (HMAM) hot mix asphalt containing recycled concrete aggregate microfluidic dynamic responses concrete asphalt mastic crumb rubber powder response surface methodology nanomaterial self-compacting concrete (SCC) rutting factor X-ray computed tomography fiber modification overlay tester rubber modified asphalt ageing aged bitumen aged asphalt recycling damage characteristics dynamic tests permeation ageing resistance |
| ISBN |
9783039210176
3039210173 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910346837803321 |
Hoff Inge
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Heat Transfer in Energy Conversion Systems
| Heat Transfer in Energy Conversion Systems |
| Autore | Mauro Alessandro |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (254 p.) |
| Soggetto topico |
Research and information: general
Technology: general issues |
| Soggetto non controllato |
artificial ground freezing
axial permanent magnet coupling (APMC) Baltic Sea Region chip integration combustor contact angle cooling system DH network district heating drying eddy current electrical power electrode energy analysis energy efficiency entropy generation exergy analysis finite element method (FEM) GEO heating heat transfer hexagonal heat exchanger high temperature proton exchange membrane fuel cell hydrophilic and hydrophobic induction heating industrial waste heat recovery lumped-parameter thermal network (LPTN) magnetic heating metro in Napoli microfluidics microwave heating multiphase model multispecies model nanofluid Navier-Stokes simulation numerical modeling organic rankine cycle output performance plate heat exchanger railway resistance heating safety of rail traffic shielded metal arc welding silicon smart asset management smart grid start-up characteristics stock-rail switch-rail temperature distribution thermal analysis thermal management thermodynamic modeling thermodynamics thermoelectric generator Thermosyphon turbulent Prandtl approaches turnouts underground station viscous dissipation waste heat recovery welding spatter welding time |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557345503321 |
Mauro Alessandro
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||