top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
In Silico Strategies for Prospective Drug Repositionings
In Silico Strategies for Prospective Drug Repositionings
Autore Udrescu Lucreția
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (288 p.)
Soggetto topico Medicine
Pharmaceutical industries
Soggetto non controllato COVID-19
drug repurposing
topological data analysis
persistent Betti function
SARS-CoV-2
network-based pharmacology
combination therapy
nucleoside GS-441524
fluoxetine
synergy
antidepressant
natural compounds
QSAR
molecular docking
drug repositioning
UK Biobank
vaccine
LC-2/ad cell line
drug discovery
docking
MM-GBSA calculation
molecular dynamics
cytotoxicity assay
GWAS
multiple sclerosis
oxidative stress
repurposing
ADME-Tox
bioinformatics
complex network analysis
modularity clustering
ATC code
hidradenitis suppurativa
acne inversa
transcriptome
proteome
comorbid disorder
biomarker
signaling pathway
druggable gene
drug-repositioning
MEK inhibitor
MM/GBSA
Glide docking
MD simulation
MM/PBSA
single-cell RNA sequencing
pulmonary fibrosis
biological networks
p38α MAPK
allosteric inhibitors
in silico screening
computer-aided drug discovery
network analysis
psychiatric disorders
medications
psychiatry
mental disorders
toxoplasmosis
Toxoplasma gondii
in vitro screening
drug targets
drug-disease interaction
target-disease interaction
DPP4 inhibitors
lipid rafts
ISBN 3-0365-6133-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910639987703321
Udrescu Lucreția  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molecular Modeling in Drug Design
Molecular Modeling in Drug Design
Autore Wade Rebecca
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (220 p.)
Soggetto non controllato metadynamics
natural compounds
virtual screening
probe energies
molecular dynamics simulation
human ecto-5?-nucleotidase
neural networks
quantitative structure-activity relationship (QSAR)
artificial intelligence
allosterism
in silico screening
drug discovery
amyloid fibrils
mechanical stability
adenosine receptors
adenosine receptor
ligand binding
promiscuous mechanism
AutoGrid
dynamic light scattering
resultant dipole moment
density-based clustering
Alzheimer’s disease
drug design
biophenols
enzymatic assays
all-atom molecular dynamics simulation
fragment screening
adenosine
docking
molecular docking
cosolvent molecular dynamics
turbidimetry
squalene synthase (SQS)
molecular recognition
protein-peptide interactions
extracellular loops
FimH
binding affinity
rational drug design
de novo design
hyperlipidemia
AR ligands
aggregation
property prediction
PPI inhibition
deep learning
proteins
quantitative structure-property prediction (QSPR)
protein protein interactions
boron cluster
target-focused pharmacophore modeling
ligand–protofiber interactions
structure-based drug design
scoring function
grid maps
solvent effect
adhesion
molecular dynamics
Traditional Chinese Medicine
steered molecular dynamics
interaction energy
EphA2-ephrin A1
molecular modeling
method development
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346839403321
Wade Rebecca  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui