top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Process Monitoring for Industry 4.0
Advanced Process Monitoring for Industry 4.0
Autore Reis Marco S
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (288 p.)
Soggetto topico Technology: general issues
Soggetto non controllato spatial-temporal data
pasting process
process image
convolutional neural network
Industry 4.0
auto machine learning
failure mode effects analysis
risk priority number
rolling bearing
condition monitoring
classification
OPTICS
statistical process control
control chart pattern
disruptions
disruption management
fault diagnosis
construction industry
plaster production
neural networks
decision support systems
expert systems
failure mode and effects analysis (FMEA)
discriminant analysis
non-intrusive load monitoring
load identification
membrane
data reconciliation
real-time
online
monitoring
Six Sigma
multivariate data analysis
latent variables models
PCA
PLS
high-dimensional data
statistical process monitoring
artificial generation of variability
data augmentation
quality prediction
continuous casting
multiscale
time series classification
imbalanced data
combustion
optical sensors
spectroscopy measurements
signal detection
digital processing
principal component analysis
curve resolution
data mining
semiconductor manufacturing
quality control
yield improvement
fault detection
process control
multi-phase residual recursive model
multi-mode model
process monitoring
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557491503321
Reis Marco S  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data-Intensive Computing in Smart Microgrids
Data-Intensive Computing in Smart Microgrids
Autore Herodotou Herodotos
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (238 p.)
Soggetto topico Technology: general issues
Soggetto non controllato electricity load forecasting
smart grid
feature selection
Extreme Learning Machine
Genetic Algorithm
Support Vector Machine
Grid Search
AMI
TL
SG
NB-PLC
fog computing
green community
resource allocation
processing time
response time
green data center
microgrid
renewable energy
energy trade contract
real time power management
load forecasting
optimization techniques
deep learning
big data analytics
electricity theft detection
smart grids
electricity consumption
electricity thefts
smart meter
imbalanced data
data-intensive smart application
cloud computing
real-time systems
multi-objective energy optimization
renewable energy sources
wind
photovoltaic
demand response programs
energy management
battery energy storage systems
demand response
scheduling
automatic generation control
single/multi-area power system
intelligent control methods
virtual inertial control
soft computing control methods
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557603203321
Herodotou Herodotos  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evolutionary Computation & Swarm Intelligence
Evolutionary Computation & Swarm Intelligence
Autore Caraffini Fabio
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (286 p.)
Soggetto topico Information technology industries
Soggetto non controllato dynamic stream clustering
online clustering
metaheuristics
optimisation
population based algorithms
density based clustering
k-means centroid
concept drift
concept evolution
imbalanced data
screening criteria
DE-MPFSC algorithm
Markov process
entanglement degree
data integration
PSO
robot
manipulator
analysis
kinematic parameters
identification
approximate matching
context-triggered piecewise hashing
edit distance
fuzzy hashing
LZJD
multi-thread programming
sdhash
signatures
similarity detection
ssdeep
maximum k-coverage
redundant representation
normalization
genetic algorithm
hybrid algorithms
memetic algorithms
particle swarm
multi-objective deterministic optimization, derivative-free
global/local optimization
simulation-based design optimization
wireless sensor networks
routing
Swarm Intelligence
Particle Swarm Optimization
Social Network Optimization
compact optimization
discrete optimization
large-scale optimization
one billion variables
evolutionary algorithms
estimation distribution algorithms
algorithmic design
metaheuristic optimisation
evolutionary computation
swarm intelligence
memetic computing
parameter tuning
fitness trend
Wilcoxon rank-sum
Holm–Bonferroni
benchmark suite
data sampling
feature selection
instance weighting
nature-inspired algorithms
meta-heuristic algorithms
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557283803321
Caraffini Fabio  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui