top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Process Monitoring for Industry 4.0
Advanced Process Monitoring for Industry 4.0
Autore Reis Marco S
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (288 p.)
Soggetto topico Technology: general issues
Soggetto non controllato artificial generation of variability
auto machine learning
classification
combustion
condition monitoring
construction industry
continuous casting
control chart pattern
convolutional neural network
curve resolution
data augmentation
data mining
data reconciliation
decision support systems
digital processing
discriminant analysis
disruption management
disruptions
expert systems
failure mode and effects analysis (FMEA)
failure mode effects analysis
fault detection
fault diagnosis
high-dimensional data
imbalanced data
Industry 4.0
latent variables models
load identification
membrane
monitoring
multi-mode model
multi-phase residual recursive model
multiscale
multivariate data analysis
n/a
neural networks
non-intrusive load monitoring
online
optical sensors
OPTICS
pasting process
PCA
plaster production
PLS
principal component analysis
process control
process image
process monitoring
quality control
quality prediction
real-time
risk priority number
rolling bearing
semiconductor manufacturing
signal detection
Six Sigma
spatial-temporal data
spectroscopy measurements
statistical process control
statistical process monitoring
time series classification
yield improvement
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557491503321
Reis Marco S  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data-Intensive Computing in Smart Microgrids
Data-Intensive Computing in Smart Microgrids
Autore Herodotou Herodotos
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (238 p.)
Soggetto topico Technology: general issues
Soggetto non controllato AMI
automatic generation control
battery energy storage systems
big data analytics
cloud computing
data-intensive smart application
deep learning
demand response
demand response programs
electricity consumption
electricity load forecasting
electricity theft detection
electricity thefts
energy management
energy trade contract
Extreme Learning Machine
feature selection
fog computing
Genetic Algorithm
green community
green data center
Grid Search
imbalanced data
intelligent control methods
load forecasting
microgrid
multi-objective energy optimization
n/a
NB-PLC
optimization techniques
photovoltaic
processing time
real time power management
real-time systems
renewable energy
renewable energy sources
resource allocation
response time
scheduling
SG
single/multi-area power system
smart grid
smart grids
smart meter
soft computing control methods
Support Vector Machine
TL
virtual inertial control
wind
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557603203321
Herodotou Herodotos  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evolutionary Computation & Swarm Intelligence
Evolutionary Computation & Swarm Intelligence
Autore Caraffini Fabio
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (286 p.)
Soggetto topico Information technology industries
Soggetto non controllato algorithmic design
analysis
approximate matching
benchmark suite
compact optimization
concept drift
concept evolution
context-triggered piecewise hashing
data integration
data sampling
DE-MPFSC algorithm
density based clustering
discrete optimization
dynamic stream clustering
edit distance
entanglement degree
estimation distribution algorithms
evolutionary algorithms
evolutionary computation
feature selection
fitness trend
fuzzy hashing
genetic algorithm
global/local optimization
Holm-Bonferroni
hybrid algorithms
identification
imbalanced data
instance weighting
k-means centroid
kinematic parameters
large-scale optimization
LZJD
manipulator
Markov process
maximum k-coverage
memetic algorithms
memetic computing
meta-heuristic algorithms
metaheuristic optimisation
metaheuristics
multi-objective deterministic optimization, derivative-free
multi-thread programming
nature-inspired algorithms
normalization
one billion variables
online clustering
optimisation
parameter tuning
particle swarm
Particle Swarm Optimization
population based algorithms
PSO
redundant representation
robot
routing
screening criteria
sdhash
signatures
similarity detection
simulation-based design optimization
Social Network Optimization
ssdeep
swarm intelligence
Swarm Intelligence
Wilcoxon rank-sum
wireless sensor networks
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557283803321
Caraffini Fabio  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mapping Tree Species Diversity
Mapping Tree Species Diversity
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2023
Descrizione fisica 1 online resource (414 p.)
Soggetto topico Geography
Research & information: general
Soggetto non controllato accuracy
aerial imagery
ALS
AVIRIS-NG
biodiversity
biosecurity
boreal forest
BPWW
classification
climatic gradient
CNN
convex hull volume
convolutional networks
convolutional neural network
cross-validation
curve matching
data fusion
dead wood
deep learning
endangered tree species
feature extraction
forest
forest cover and species
forest inventory
forest pathology
forest species
forest stands classification
forest structure analysis
forestry
GEE
high-resolution remote sensing imagery
hyperspectral multitemporal information
illumination correction
imbalanced data
individual tree crown delineation
individual tree species recognition
ISRO-NASA campaign
Landsat
LiDAR
machine learning
machine learning algorithm
mapping
Mount Taishan
multi-layer perception
multi-temporal
multisource remote sensing data
multitemporal
myrtle rust
object-based
optical data
phenological metrics
pixel-based classification
probability random forest
radiative transfer model
random forest
RGB
SAR
savanna
scale effect
segmentation
selective logging
semideciduous forest
Sentinel-1
Sentinel-2
Serbia
Siberia
single trees
spatial autocorrelation
spatial divergence
species distribution model
species diversity
spectral diversity
time series
tree species
tree species classification
tree species mapping
trees species identification
tropical forests
UAV
up-scaling
urban forestry
Wienerwald biosphere reserve
woody vegetation
WorldView-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911053076503321
MDPI - Multidisciplinary Digital Publishing Institute, 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui