top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning Applications with Practical Measured Results in Electronics Industries
Deep Learning Applications with Practical Measured Results in Electronics Industries
Autore Kung Hsu-Yang
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (272 p.)
Soggetto non controllato faster region-based CNN
visual tracking
intelligent tire manufacturing
eye-tracking device
neural networks
A*
information measure
oral evaluation
GSA-BP
tire quality assessment
humidity sensor
rigid body kinematics
intelligent surveillance
residual networks
imaging confocal microscope
update mechanism
multiple linear regression
geometric errors correction
data partition
Imaging Confocal Microscope
image inpainting
lateral stage errors
dot grid target
K-means clustering
unsupervised learning
recommender system
underground mines
digital shearography
optimization techniques
saliency information
gated recurrent unit
multivariate time series forecasting
multivariate temporal convolutional network
foreign object
data fusion
update occasion
generative adversarial network
CNN
compressed sensing
background model
image compression
supervised learning
geometric errors
UAV
nonlinear optimization
reinforcement learning
convolutional network
neuro-fuzzy systems
deep learning
image restoration
neural audio caption
hyperspectral image classification
neighborhood noise reduction
GA
MCM uncertainty evaluation
binary classification
content reconstruction
kinematic modelling
long short-term memory
transfer learning
network layer contribution
instance segmentation
smart grid
unmanned aerial vehicle
forecasting
trajectory planning
discrete wavelet transform
machine learning
computational intelligence
tire bubble defects
offshore wind
multiple constraints
human computer interaction
Least Squares method
ISBN 3-03928-864-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404080403321
Kung Hsu-Yang  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS)
Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS)
Autore Tang Bo
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (344 p.)
Soggetto non controllato FPGA
recurrence plot (RP)
residual learning
neural networks
driver monitoring
navigation
depthwise separable convolution
optimization
dynamic path-planning algorithms
object tracking
sub-region
cooperative systems
convolutional neural networks
DSRC
VANET
joystick
road scene
convolutional neural network (CNN)
multi-sensor
p-norm
occlusion
crash injury severity prediction
deep leaning
squeeze-and-excitation
electric vehicles
perception in challenging conditions
T-S fuzzy neural network
total vehicle mass of the front vehicle
electrocardiogram (ECG)
communications
generative adversarial nets
camera
adaptive classifier updating
Vehicle-to-X communications
convolutional neural network
predictive
Geobroadcast
infinity norm
urban object detector
machine learning
automated-manual transition
red light-running behaviors
photoplethysmogram (PPG)
panoramic image dataset
parallel architectures
visual tracking
autopilot
ADAS
kinematic control
GPU
road lane detection
obstacle detection and classification
Gabor convolution kernel
autonomous vehicle
Intelligent Transport Systems
driving decision-making model
Gaussian kernel
autonomous vehicles
enhanced learning
ethical and legal factors
kernel based MIL algorithm
image inpainting
fusion
terrestrial vehicle
driverless
drowsiness detection
map generation
object detection
interface
machine vision
driving assistance
blind spot detection
deep learning
relative speed
autonomous driving assistance system
discriminative correlation filter bank
recurrent neural network
emergency decisions
LiDAR
real-time object detection
vehicle dynamics
path planning
actuation systems
maneuver algorithm
autonomous driving
smart band
the emergency situations
two-wheeled
support vector machine model
global region
biological vision
automated driving
ISBN 3-03921-376-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Machine Learning and Embedded Computing in Advanced Driver Assistance Systems
Record Nr. UNINA-9910367757403321
Tang Bo  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui